Synthesis, Structure, and Reactions of Chiral Rhenium Vinylidene and Acetylide Complexes of the Formula $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(X)]^{n+}$: Vinylidene Complexes That Are Formed by Stereospecific C_{β} Electrophilic Attack, Exist as Two Re=C=C Geometric Isomers, and Undergo Stereospecific C_{α} Nucleophilic Attack

Dwayne R. Senn,^{1a} Andrew Wong,^{1b} Alan T. Patton,^{1a,b} Marianne Marsi,^{1b} Charles E. Strouse,^{1b} and J. A. Gladysz^{*,1a-c}

Contribution from the Departments of Chemistry, University of Utah, Salt Lake City, Utah 84112, and University of California, Los Angeles, California 90024. Received December 21, 1987

Abstract: Sequential reactions of acyl complexes $(\eta^5-C_5H_5)Re(NO)(PPh_3)(COCH_2R)$ (2: R = H (a), CH₃ (b), C₆H₅ (c), 1-naphthyl (d)) with $(CF_3SO_2)_2O$ (0.5 equiv), base (1.0 equiv), and $(CF_3SO_2)_2O$ (0.5 equiv) give vinylidene complexes $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(=C=CHR)]^+CF_3SO_3^-$ (3a-d $CF_3SO_3^-$, 63-95%). Complexes 3b-d $CF_3SO_3^-$ crystallize as (95) $[(\eta^{-}C_{5}H_{5})Re(NO)(PPh_{3})(=C=CHR)]$ CF₃SO₃ (3a-d CF₃SO₃, 63-95%). Complexes 3b-dCF₃SO₃ crystallize as (95 ± 2);(5 ± 2), >99:1, and >99:1 mixtures of sc/ac Re=C=C geometric isomers but equilibrate to (50 ± 2):(50 ± 2), (80 ± 2):(20 ± 2) and (80 ± 2):(20 ± 2) mixtures in CD₂Cl₂. Photolysis gives (50 ± 2):(50 ± 2) photostationary states. An X-ray crystal structure of sc-3dPF₆⁻ (Re=C_a 1.840 (17) Å) shows a P-Re-C_b-C_{Np} torsion angle of 161.5°, placing the naphthyl substituent anti to the bulky PPh₃ ligand. Reactions of 3a-dCF₃SO₃⁻ with base give acetylide complexes (η^{5} -C₅H₅)Re-(NO)(PPh₃)(C=CR) (6a-d, 59-93%). Reactions of 6b-d with CF₃SO₃⁻ (178 °C, assayed by NMR) give (98 ± 2):(2 ± 2), >99:1, and >99:1, mixtures of ac- and sc-3b-dCF₃SO₃⁻. Analogous C_b methylation reactions (6b-c) are similarly stereospecific. This has a set as a comparise to the PBh This high 1,3-asymmetric induction is ascribed to electrophilic attack upon C_{θ} of **6b-d** from a direction opposite to the PPh₃ ligand, giving the less stable Re=C=C isomer with the C_{β} substituent syn to the PPh₃ ligand. Rates of ac-**3b-d**CF₃SO₃⁻ \rightarrow sc-**3b-d**CF₃SO₃⁻ isomerization give $\Delta H^* = 20.8$, 16.9, 18.6 kcal/mol and $\Delta S^* = -5.7, -15.5, -10.5$ eu. A crystal structure of **6b** (Re-C_{α} 2.066 (7) Å) shows the ReC=CCH₃ linkage to be essentially linear. Reactions of ac- and sc-**3b**CF₃SO₃⁻ with $P(CH_3)_3$ give (Z)- and (E)- $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(C(P(CH_3)_3)=CHCH_3)]^+CF_3SO_3^-$, respectively, indicating preferential attack upon the C_{α} face opposite to PPh₃.

Transition-metal vinylidene complexes, $[L_nM=C=CRR']^{n+}$, have received extensive study over the last decade.²⁻¹² This interest

(1) (a) Oniversity of Utah. (b) University of California. (c) Address correspondence to this author at the University of Utah.
(2) Review: Bruce, M. 1.; Swincer, A. G. Adv. Organomet. Chem. 1983, 22, 59.

22, 59.
(3) (a) Davison, A.; Selegue, J. P. J. Am. Chem. Soc. 1978, 100, 7763. (b) Adams, R. D.; Davison, A.; Selegue, J. P. Ibid. 1979, 101, 7232. (c) Davison, A.; Selegue, J. P. Ibid. 1980, 102, 2455.
(4) (a) Selegue, J. P. J. Am. Chem. Soc. 1982, 104, 119. (b) Selegue, J. P. Ibid. 1983, 105, 5921. (c) lyer, R. S.; Selegue, J. P. Ibid. 1987, 109, 910. (5) (a) Boland, B. E.; Fam, S. A.; Hughes, R. P. J. Organomet. Chem. 1979, 172, C29. (b) Boland-Lussier, B. E.; Churchill, M. R.; Hughes, R. P.; Rheingold, A. L. Organometallics 1982, 1, 628. (c) Boland-Lussier, B. E.; Hughes, R. P. Ibid. 1982, 1, 635. (6) (a) Bruce, M. 1. Aust. J. Chem. 1980, 33, 1471. (b) Bruce, M. 1.

Rheingold, A. L. Organometallics 1982, 1, 628. (c) Boland-Lussier, B. E.;
Hughes, R. P. Ibid. 1982, 1, 635.
(6) (a) Bruce, M. I. Aust. J. Chem. 1980, 33, 1471. (b) Bruce, M. I.;
Wong, F. S.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 1982, 2203. (c) Bruce, M. I.; Humphrey, M. G.; Snow, M. R.; Tiekink, E. R. T. J. Organomet. Chem. 1986, 314, 213. (d) Bruce, M. I.; Koutsantonis, G. A.;
Liddell, M. J.; Nicholson, B. K. Ibid. 1987, 320, 217. (e) Bruce, M. I.;
Humphrey, M. G.; Liddell, M. J. Ibid. 1987, 321, 91. (f) Bruce, M. I.;
Humphrey, M. G.; Koutsantonis, G. A.; Liddell, M. J. Ibid. 1987, 326, 247.
(7) (a) Davies, S. G.; Scott, F. J. Organomet. Chem. 1980, 188, C41. (b)
Abbott, S.; Davies, S. G.; Warner, P. Ibid. 1983, 246, C65.
(8) (a) Wolf, J.; Werner, H.; Serhadli, O.; Ziegler, M. L. Angew. Chem., Int. Ed. Engl. 1983, 22, 414. (b) Garcia Alonso, F. J.; Höhn, A.; Wolf, J.;
Otto, H.; Werner, H. Ibid. 1985, 24, 406. (c) Werner, H.; Garcia Alonso, F. J.; Otto, H.; Peters, K.; von Schnering, H. G. J. Organomet. Chem. 1985, 289, C5. (d) Weinand, R.; Werner, H. J. Chem. Soc., Chem. Commun. 1985, 1145. (e) Höhn, A.; Otto, H.; Dziallas, M.; Werner, H. Ibid. 1987, 852. (f)
Werner, L.; Wolf, J.; Garcia Alonso, F. J.; Ziegler, M. L.; Serhadli, O. J. Organomet. Chem. 1987, 336, 397.
(9) (a) Consiglio, G.; Bangerter, F.; Darpin, C.; Morandini, F.; Lucchini, V. Organometallics 1984, 3, 1446. (b) Consiglio, G.; Morandini, F.; Ciani, G. F.; Sironi, A. Ibid. 1986, 5, 1976. (c) Consiglio, G.; Morandini, F.; Ciani, G. F.; Sironi, A. Ibid. 1986, 5, 1976. (c) Consiglio, G.; Morandini, F. Iorganomet. Ohem. Soc., Chem. Commun. 1988, 25.
(10) (a) Landon, S. J.; Shulman, P. M.; Geoffroy, G. L. J. Am. Chem. Soc. (1985, 276, 273).

(10) (a) Landon, S. J.; Shulman, P. M.; Geoffroy, G. L. J. Am. Chem. Soc. 1985, 107, 6739. (b) Pourreau, D. B.; Geoffroy, G. L.; Rheingold, A. L.; Geib, S. J. Organometallics 1986, 5, 1337.

arises from a variety of factors. First, compounds that contain metal-carbon double bonds exhibit unique and diverse reactivity modes and structural properties. Second, surface-bound vinylidene ligands have been proposed to play a key role in hydrocarbon chain growth in the heterogeneously catalyzed Fischer-Tropsch process ("McCandlish mechanism").¹³ Third, vinylidene complexes have been shown to be effective acetylene polymerization catalyst precursors.^{10a} Fourth, vinylidene complexes show good potential for use in organic synthesis, such as in the preparation of β lactams.¹⁴ Fifth, the parent vinylidene ligand, $=C=CH_2$, has been generated and spectroscopically characterized under high vacuum conditions on crystalline metal surfaces15 and under matrix

and references cited therein: (a) Antonova, A. B.; Kovalenko, S. V.; Korniyets, E. D.; Johansson, A. A.; Struchkov, Yu. T.; Ahmedov, A. I.; Yanovsky, A. I. J. Organomet. Chem. 1983, 244, 35. (b) Roper, W. R.; Waters, J. M.; Wright, L. J.; van Meuers, F. Ibid. 1980, 201, C27. (c) Berke, H.; Huttner, G.; von Seyerl, J. Ibid. 1981, 218, 193. (d) Beevor, R. G.; Freeman, M. J.; Green, M.; Morton, C. E.; Orpen, A. G. J. Chem. Soc., Chem. Commun. 1985, 68. (e) Chan, Y. W.; Renner, M. W.; Balch, A. L. Organometallics 1983, 2, 1888. (f) Reger, D. L.; Swift, C. A. Ibid. 1984, 3, 876. (g) Mayr, A.; Schaefer, K. C.; Huang, E. Y. J. Am. Chem. Soc. 1984, 106, 1517. (h) Birdwhistell, K. R.; Tonker, T. L.; Templeton, J. L. Ibid. 1985, 107, 4474. (i) Collman, J. P.; Brothers, P. J.; McElwee-White, L.; Rose, E. Ibid. 1986, 108, 5347. (k) Bullock, R. M. Ibid. 1987, 109, 8087. (13) (a) McCandlish, L. E. J. Catal. 1983, 83, 362. (b) Hoel, E. L.; Ansell, G. B.; Leta, S. Organometallics 1986, 5, 585. (c) Hoel, E. L. Ibid. 1986, 5, 587.

(14) (a) Barrett, A. G. M.; Sturgess, M. A. Tetrahedron Lett. 1986, 27, 3811; J. Org. Chem. 1987, 52, 3940. (b) Liebeskind, L. S.; Chidambaram, R. J. Am. Chem. Soc. 1987, 109, 5025. (c) Barrett, A. G. M.; Carpenter, N. E. Organometallics 1987, 6, 2249. (15) Hills, M. M.; Parmeter, J. E.; Weinberg, W. H. J. Am. Chem. Soc. 1987, 109, 5025.

1987, 109, 597.

⁽¹¹⁾ Structurally characterized rhenium vinylidene complexes: (a) Kolobova, N. E.; Antonova, A. B.; Khitrova, O. M.; Antipin, M. Yu.; Struchkov, Yu. T. J. Organomet. Chem. 1977, 137, 69. (b) Pombeiro, A. J. L.; Jeffrey, J. C.; Pickett, C. J.; Richards, R. L. Ibid. 1984, 277, C7. (12) For other work on vinylidene complexes, see the following lead articles and references cited therein: (a) Antonova, A. B.; Kovalenko, S. V.; Korniyeta, E. D.; Hoarson, A. A. Struchkow, W. T.; Abardon, A. L.; Korniyeta, S. C.; Pickett, C. J.; Richards, W. T.; Abardon, A. L.; Korniyeta, S. C.; Pickett, C. J.; Richards, W. T.; Abardon, A. L.; Korniyeta, S. C.; Pickett, C. J.; Richards, C. V.; Korniyeta, S. C.; Pickett, C. J.; Korniyeta, S. Korniye

Figure 1. Comparison of (a) the HOMO of the $(\eta^5-C_5H_5)Re(NO)$ - $(PPh_3)^+$ fragment with (b) Re=C_a geometric isomers in alkylidene complexes $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(=CHR)]^+$ and (c) Re=C=C_b geometric isomers in vinylidene complexes $[(\eta^5-C_5H_5)Re(NO)(PPh_3) (=C=CHR)]^{+}$

isolation conditions on single metal centers.¹⁶ Finally, free vinylidene C=CH₂) rapidly rearranges to acetylene ($<10^{-12}$ s) and thus, unlike metal vinylidene complexes, is not readily amenable to direct study.17

Transition-metal acetylide or alkynyl complexes, $L_nMC \equiv CR$, are common precursors to, and reaction products of, vinylidene complexes.^{18,19} Their structural features and reactivity are also of fundamental interest, and they provide an opportunity to define transition-metal substituent effects upon C=C triple bond properties.²⁰ Acetylide complexes of electron-donating $L_n \ddot{M}$ systems should have two important resonance contributors, I and II, as shown in eq 1. Such acetylide complexes should, like yneamines $(R_2 \ddot{N}C \equiv CR)$,²¹ be nucleophilic at C_{β} .

$$L_n M - C \equiv C - R \leftrightarrow L_n M^+ \equiv C = C^- - R$$
(1)

We have previously shown that the chiral rhenium fragment $(\eta^5 - C_5H_5)Re(NO)(PPh_3)^+$ is a powerful π donor, with the highlying d orbital HOMO shown in Figure 1a.²² We have also

(18) Review: Nast, R. Coora. Chem. Rev. 1982, 47, 89.
(19) Many of the articles cited in ref 2-12 also deal with acetylide complexes. See also the following references: (a) Bruce, M. 1.; Harbourne, D. A.; Waugh, F.; Stone, F. G. A. J. Chem. Soc. A 1968, 356. (b) Sieber, W.; Wolfgruber, M.; Neugebauer, D.; Orama, O.; Kreißl, F. R. Z. Naturforsch. B: Anorg. Chem., Org. Chem. 1983, 38b, 67. (c) Consiglio, G.; Morandini, F.; Sironi, A. J. Organomet. Chem. 1986, 306, C45. (d) Buang, N. A.; Hughes, D. L.; Kashef, N.; Richards, R. L.; Pombeiro, A. J. L. Ibid. 1987, 223 C41. (c) March 1987, 2010. 323, C47. (e) Marder, T. B.; Zargarian, D.; Calabrese, J. C.; Herskovitz, T.

H.; Milstein, D. J. Chem. Soc., Chem. Commun. 1987, 1484.
(20) Kostič, N. M.; Fenske, R. F. Organometallics 1982, 1, 974.
(21) (a) Ficini, J. Tetrahedron 1976, 32, 1449. (b) Pitacco, G.; Valentin, E. In The Chemistry of Amino, Nitroso and Nitro Compounds and Their Derivatives; Supplement F, Part 1; Patai, S., Ed.; Wiley: New York, 1985; Chapter 15.

Scheme I. Synthesis of Vinylidene Complexes $[(\eta^5 - C_5H_5)Re(NO)(PPh_3)(=C=CHR)]^+CF_3SO_3^-(3CF_3SO_3^-)$

reported that the corresponding rhenium alkylidene complexes $[(\eta^5 - C_5H_5)Re(NO)(PPh_3)(=CHR)]^+PF_6^-$ can easily be prepared as either of the two Re=C geometric isomers illustrated in Figure 1b as well as in optically pure form.^{22,23} Overlap of the rhenium fragment HOMO with the =CHR ligand p acceptor orbital is maximized in each isomer. These complexes undergo stereospecific or stereoselective C_{α} nucleophilic (Nu:⁻) attack to give alkyl complexes of the formula $(\eta^5-C_5H_5)Re(NO)(PPh_3)(CHRNu)$ in high diastereomeric excess. We have also shown that chiral rhenium vinyl complexes $(\eta^5 - C_5 H_5) Re(NO)(PPh_3)(CX = CRR')$ undergo stereoselective C_{β} electrophilic (E⁺) attack to give alkylidene complexes of the formula $[(\eta^5 - C_5H_5)Re(NO)(PPh_3) -$ (=CXCRR'E)]⁺ in high diastereomeric excess.²⁴ Hence, we sought to determine whether similar structural and chemical phenomena would be exhibited by analogous rhenium vinylidene and acetylide complexes.

5

In this paper, we report (a) high-yield syntheses of chiral rhenium vinylidene complexes $[(\eta^5 - C_5H_5)Re(NO)(PPh_3)(=C=$ $(R^{\prime})^{+}X^{-}$ and acetylide complexes $(\eta^{5}-C_{5}H_{5})Re(NO)$ - $(PPh_3)(C \equiv CR)$, (b) the first observation of M = C = C geometric isomerism in vinylidene complexes, (c) the thermal and photochemical interconversion of these geometric isomers and the

⁽¹⁶⁾ Kline, E. S.; Kafafi, Z. H.; Hauge, R. H.; Margrave, J. L. J. Am. Chem. Soc. 1987, 109, 2402.

⁽¹⁷⁾ Durán, R. P.; Amorebieta, V. T.; Colussi, A. J. J. Am. Chem. Soc. 1987, 109, 3154.

¹⁸⁾ Review: Nast, R. Coord. Chem. Rev. 1982, 47, 89.

^{(22) (}a) Kiel, W. A.; Lin, G.-Y.; Constable, A. G.; McCormick, F. B.; Strouse, C. E.; Eisenstein, O.; Gladysz, J. A. J. Am. Chem. Soc. 1982, 104, 4865. (b) Kiel, W. A.; Lin, G.-Y.; Bodner, G. S.; Gladysz, J. A. *Ibid.* **1983**, *105*, 4958. (c) Kiel, W. A.; Buhro, W. E.; Gladysz, J. A. Organometallics **1984**, *3*, 879. (d) Georgiou, S.; Gladysz, J. A. *Tetrahedron* **1986**, *42*, 1109. (e) O'Connor, E. J.; Kobayashi, M.; Floss, H. G.; Gladysz, J. A. J. Am. Chem. Soc. 1987, 109, 4837

⁽²³⁾ Merrifield, J. H.; Strouse, C. E.; Gladysz, J. A. Organometallics 1982, 1, 1204

⁽²⁴⁾ Bodner, G. S.; Smith, D. E.; Hatton, W. G.; Heah, P. C.; Georgiou, S.; Rheingold, A. L.; Geib, S. J.; Hutchinson, J. P.; Gladysz, J. A. J. Am. Chem. Soc. 1987, 109, 7688.

corresponding rates and activation parameters, (d) examples of stereospecific C_{α} nucleophilic attack upon the vinylidene complexes and stereospecific C_{β} electrophilic attack upon the acetylide complexes, and (e) X-ray crystal structures that establish the stereochemistry of these transformations and bonding features of both types of complexes. A portion of this study has been communicated.²⁵

Results

1. Syntheses of Vinylidene Complexes $[(\eta^5-C_5H_5)Re(NO)-(PPh_3)(=C=CHR)]^+CF_3SO_3^-$. The "methyl ester" $(\eta^5-C_5H_5)-Re(NO)(PPh_3)(CO_2CH_3)$ (1) was treated with Grignard reagents RCH₂MgBr as previously reported²⁶ to give the known acyl complexes $(\eta^5-C_5H_5)Re(NO)(PPh_3)(COCH_2R)$ (2; **a**, R = H; **b**, $R = CH_3$; **c**, $R = C_6H_5$). Reaction of 1 and the Grignard reagent derived from 1-(chloromethyl)naphthalene, $1-C_{10}H_7CH_2MgCl$, gave the new acyl complex $(\eta^5-C_5H_5)Re(NO)(PPh_3)(COCH_2-(1-C_{10}H_7))$ (2d, 76%).

Acyl complexes 2a-d were treated with 1.0 equiv of triflic anhydride, (CF3SO2)2O (Scheme I). This reagent had previously been shown by Hughes to efficiently convert iron acyl complexes $(\eta^5-C_5H_5)Fe(CO)(PPh_3)(COCH_2R)$ to observable carbene complexes $[(\eta^5 - C_5H_5)Fe(CO)(PPh_3)(=C(OSO_2CF_3)CH_2R)]^+$ CF₃SO₃, which then fragmented to the corresponding vinylidene complexes.5 However, ¹H and ³¹P NMR monitoring (-80 °C, CD₂Cl₂ or CH₂Cl₂, <5 min) indicated formation of a 50:50 mixture of the desired vinylidene complexes $[(\eta^5-C_5H_5)Re-$ (NO)(PPh₃)(=C=CHR)]+CF₃SO₃-(3a-dCF₃SO₃-)²⁷ and undesired hydroxycarbene complexes [(n⁵-C₅H₅)Re(NO)(PPh₃)-(=C(OH)CH₂R)]⁺CF₃SO₃⁻ (4a-dCF₃SO₃⁻). Identical mixtures were obtained with 0.5 equiv or large excesses of (CF₃SO₂)₂O. Hydroxycarbene complexes 4a-bCF₃SO₃⁻ have previously been shown to rapidly form from acyl complexes 2a-b and CF₃SO₃H.²⁶ Hence, the probable initial intermediate in Scheme I, carbene complex $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(=C(OSO_2CF_3)CH_2R)]^+$ CF₃SO₃⁻ (5, Scheme I), likely fragments to CF₃SO₃H and 3CF₃SO₃⁻ at a rate faster than its formation.

This problem was circumvented by treating the $3CF_3SO_3^{-/}$ $4CF_3SO_3^{-}$ mixtures with 1 equiv of the bases K⁺-t-BuO⁻ or TMP.^{27d} Both cationic compounds were deprotonated (Scheme I) to give 50:50 mixtures of acetylide complexes (η^5 -C₅H₅)Re-(NO)(PPh₃)(C=CR) (6; isolated below) and acyl complexes 2. These mixtures were then treated with 0.5 equiv of (CF₃SO₂)₂O. The remaining acyl complex 2 was converted to 3CF₃SO₃, and the acetylide complex 6 acted as a base for the CF₃SO₃H liberated. This multistep but convergent "one-pot" preparation gave vinylidene complexes $3a-dCF_3SO_3^-$ as crude powders in 84-95%yields.

2. Characterization of Vinylidene Complexes. Subsequent crystallization gave analytically pure $3b-dCF_3SO_3^-$ (63-78% from 2b-d), which were characterized by IR and ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR spectroscopy (Table I). The crystals were dissolved in CD₂Cl₂ at -78 °C, and ¹H NMR spectra were immediately recorded at -80 °C. It was thus shown that crystalline $3b-dCF_3SO_3^-$ consisted of (95 ± 2):(5 ± 2), >99:1, and >99:1 mixtures of sc/ac^{27a} Re=C=C geometric isomers (Figure 1), respectively. The solutions were kept at room temperature for 24 h, after which time (50 ± 2):(50 ± 2), (80 ± 2):(20 ± 2), and (80 ± 2):(20 ± 2) sc/ac equilibrium mixtures were made in anticipation that the vinylidene ligand would prefer to adopt

Figure 2. Structure of the cation of naphthylvinylidene complex *sc*- $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(=C=CH(1-C_{10}H_7))]^+PF_6^- (sc-3dPF_6^-)$. Top: numbering diagram; bottom: Newman projection down C2-C1-Re with phenyl rings omitted.

conformations VI (*ac*) and VII (*sc*; Figure 1c), which maximize overlap of the rhenium fragment d orbital HOMO (see III) with the C_{α} p acceptor orbital, and that steric interaction between the bulky PPh₃ ligand and the C_{β} alkyl substituent would destabilize VI. These assumptions were verified as described below.

Vinylidene complexes **3a-d**CF₃SO₃⁻ exhibited several noteworthy spectroscopic features. The η^5 -C₅H₅ ligand ¹H NMR resonances (ca. δ 6.00) were among the furthest downfield observed in cationic rhenium complexes $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(X)]^+$, in accord with the high π acidity of vinylidene ligands.²⁰ The IR $\nu_{N=0}$ were also greater than usual, and weak $\nu_{C=C}$ were present. Downfield C_a resonances were noted in ¹³C NMR spectra. Solutions of **3a-d**CF₃SO₃⁻ were yellow to yellow-brown, and naphthylvinylidene complex **3d**CF₃SO₃⁻ exhibited a long wavelength UV absorption at 367 nm (ϵ 7600; Experimental Section). This band was absent in **3b**CF₃SO₃⁻ and naphthalene.

Assignments of NMR resonances to sc/ac isomers were made on the basis of the enriched samples described above and the stereospecific syntheses given below. The C_β protons in the *sc* isomers VII, which are syn to the PPh₃ ligand, were upfield of those in the *ac* isomers VI. Hence, the upfield =CH₂ resonance of parent vinylidene complex **3a**CF₃SO₃⁻ was assigned to the proton syn to PPh₃ (H_{ac}^{27a}). Finally, the PPh₃ ¹³C NMR resonances of naphthylvinylidene complex *ac*-**3d**CF₃SO₃⁻, which has the naphthyl group directed toward the PPh₃ ligand, were poorly resolved at -80 to -50 °C. However, sharp resonances were observed for the more stable Re=C=C isomer, *sc*-**3d**CF₃SO₃⁻ (-80 °C). This suggests increased rotational barriers for the Re-P and/or P-C bonds in *ac*-**3d**CF₃SO₃⁻.

3. X-ray Crystal Structure of $sc-[(\eta^5-C_5H_5)Re(NO)(PPh_3)-(=C=CH(1-C_{10}H_7))]^+PF_6^-$ ($sc-3dPF_6^-$). Difficulty was encountered in obtaining vinylidene complex crystals suitable for X-ray analysis or in solving the subsequent data sets. Finally, crystals of naphthylvinylidene complex $sc-3dPF_6^-$ were obtained as described below. X-ray data were acquired as summarized in Table II. Refinement, described in the Experimental Section, yielded the structure shown in Figure 2. Positional parameters, bond distances, and bond angles are summarized in Tables III-V.

⁽²⁵⁾ Wong, A.; Gladysz, J. A. J. Am. Chem. Soc. 1982, 104, 4948.
(26) Buhro, W. E.; Wong, A.; Merrifield, J. H.; Lin, G.-Y.; Constable, A.

G.; Gladysz, J. A. Organometallics 1983, 2, 1852. (27) Nomenclature conventions: (a) In synclinal (sc) Re=C=C isomers, the highest priority^{27b} ligands on Re (η^5 -C₅H₃) and C_g define a 60 ± 30° torsion angle; in anticlinal (ac) isomers, the highest priority ligands define a 120 ± 30° torsion angle. Pure Appl. Chem. 1976, 45, 11; see section E-5.6, p 24. (b) The η^5 -C₅H₃ ligand is considered to be a pseudoatom of atomic number 30, which gives the following priority sequence: η^5 -C₅H₃ > PPh₃ > NO > =C=CHR. (c) Compounds not indicated to be specific Re=C=C isomers are mixtures of isomers. (d) TMP = 2,2,6,6-tetramethylpiperidine. (e) dppe = Ph₂PCH₃CH₃CH₃PPh₃.

Scheme II. Interconversion of Vinylidene Complexes $3CF_3SO_3^-$ and Acetylide Complexes $(\eta^5 - C_5H_5)Re(NO)(PPh_3)(C \equiv CR)$ (6)

The Newman projection in the bottom part of Figure 2 illustrates the anti relationship of the C_{β} naphthyl substituent and the PPh₃ ligand in *sc*-**3d**PF₆⁻ (compare VII), thus confirming the Re=C=C geometric isomer assignments made above. The C_{β} - C_{Np} (C2-C11) bond defines 161.5° and 71.0° torsion angles with the Re-P1 and Re-N bonds, respectively. Although the C_{β} hydrogen was not located, its calculated position extends over the π cloud of the C61–C66 PPh₃ phenyl ring. Distances to the phenyl carbons range from 3.24–3.29 Å (C61, C66) to 3.84–3.91 Å (C63, C64). This accounts for the upfield ¹H NMR shifts in *sc* Re= C=C isomers noted above.

4. Syntheses and Characterization of Acetylide Complexes $(\eta^5 - C_5H_5)Re(NO)(PPh_3)(C = CR)$ (6). Vinylidene complexes $3a-dCF_3SO_3^-$ were treated with bases $K^+ - t$ -BuO⁻ or TMP.^{27d} Workup gave acetylide complexes 6a-d as powders in 53-93% yields (Scheme II). Subsequent crystallization gave analytically pure 6b-d (72-82% from $3d-dCF_3SO_3^-$).

Acetylide complexes **6a-d** were characterized by IR and ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR spectroscopy (Table VI). In all cases, diagnostic weak IR $\nu_{C=C}$ were observed. The parent acetylide complex **6a** exhibited a sharp, medium IR ν_{C-H} at 3282 cm⁻¹. This assignment was confirmed by the observation of an IR ν_{C-D} at 2268 cm⁻¹ in deuterioacetylide complex **6a**-d₁.²⁸ A proton-coupled ¹³C NMR spectrum of **6a** showed C_β (¹J_{CH} = 228 Hz) to be downfield of C_α (²J_{CH} = 39.4 Hz). The C_α carbon also showed an appreciable ²J_{CP}, whereas ³J_{CP} for C_β was <1 Hz. The downfield C=C resonances of **6b-d** also showed ³J_{CP} of <1 Hz and were accordingly assigned to C_β. Solutions of **6a-d** were orange-red, and naphthyl acetylide complex **6d** showed pronounced longer wavelength UV absorptions (Experimental Section) at 320 nm (ϵ 16000) and 360 nm (sh, ϵ 7900). These bands were absent in **6b** and naphthalene.

Equilibrium ratios (ac/sc) **3b** $(50 \pm 2):(50 \pm 2)$ **3c** $(20 \pm 2):(80 \pm 2)$

 $(20 \pm 2):(80 \pm 2)$

3c 3d

5. Reactions of Acetylide Complexes with Electrophiles. 1,3-Asymmetric Induction. Reaction of methyl acetylide complex 6b and CF_3SO_3H (1.0 equiv, CD_2Cl_2) was monitored by ¹H NMR at -78 °C. Methylvinylidene complex 3bCF₃SO₃ rapidly formed as a (98 ± 2) : (2 ± 2) mixture of *ac/sc* isomers (Scheme II). Aryl acetylide complexes 6c-d were similarly treated with CF_3SO_3H . This gave arylvinylidene complexes $ac-3c-dCF_3SO_3$ as >99:1 mixtures of ac/sc isomers. As a check, these solutions were kept at 25 °C for 24 h, and the equilibrium sc/ac isomer ratios noted above were obtained. These data are consistent with a transition state in which the protic electrophile approaches C_{β} from a direction opposite to the bulky PPh₃ ligand. Such a transition state would give the *less* stable Re=C=C isomer when the electrophile is smaller than the acetylide complex C_{β} substituent. Reaction of 6d with HPF_6 ·Et₂O and room temperature workup gave the sample of $sc-3dPF_6^-$ used in the above crystal structure.

The reaction of methyl acetylide complex **6b** and methylating agent CH₃SO₃F (CD₂Cl₂, -78 °C) was monitored by ¹H NMR. Dimethylvinylidene complex $[(\eta^5 \cdot C_5H_5)Re(NO)(PPh_3)(=C=$ C(CH₃)₂]⁺FSO₃⁻ (**7b**FSO₃⁻) formed cleanly at 0 °C (Scheme IIIa) and was isolated in 80% yield after recrystallization. Two ¹H NMR methyl resonances were observed (δ 1.96, 1.24; Table I). Similar reaction of **6b** with the deuteriated methylating agent CD₃SO₃F gave *sc*-[($\eta^5 \cdot C_5H_5$)Re(NO)(PPh₃)(=C=C(CH₃)-(CD₃))]⁺FSO₃⁻ (*sc*-**7b**-*d*₃FSO₃⁻; IX), in which the downfield δ 1.96 resonance of **7b**FSO₃⁻ was absent (detection limit 1%). Upon warming the sample above 0 °C, the δ 1.96 resonance appeared

⁽²⁸⁾ Complex 6a- d_1 was prepared from deuterioacetyl complex 2a- d_3 , which was in turn synthesized from 1 and CD₃Mgl.²⁶

Scheme III. Stereospecific Methylation of Acetylide Complexes 6

as the δ 1.24 resonance diminished. After 18 h at 25 °C, both resonances were of equal intensity. Thus, methylation of **6b** occurred stereospecifically, and the stereochemistry was assigned (Scheme IIIa) by analogy to the above protonation reactions. Accordingly, the upfield methyl ¹H NMR resonance of **7b**FSO₃⁻ (δ 1.24) was assigned to the methyl group syn to the PPh₃ ligand (*ac*-CH₃^{27a}), consistent with the C_β proton shielding trends noted above.

The reaction of phenyl acetylide complex **6c** and CH₃SO₃F was similarly monitored by ¹H NMR (Scheme IIIb). At 0 °C, methyl phenyl vinylidene complex ac-[$(\eta^5$ -C₃H₅)Re(NO)(PPh₃)(=C= C(CH₃)(C₆H₅))]⁺FSO₃⁻ (ac-7cFSO₃⁻; XI) formed as a single Re=C=C isomer, the stereochemistry of which was assigned by analogy to the above reactions. Complex ac-7cFSO₃⁻ equilibrated to a (75 ± 2):(25 ± 2) sc/ac mixture over the course of 4 h at 30-45 °C. Hence, as with the protonation of **6c**, the less stable Re=C=C isomer formed initially. As expected, the ¹H NMR methyl resonance of the sc isomer (XII; δ 1.58) was upfield of that of the ac isomer (XI; δ 2.33).

Figure 3. Molecular structure of methyl acetylide complex $(\eta^5 \cdot C_5 H_5) \cdot \text{Re}(\text{NO})(\text{PPh}_3)(\text{C}=\text{CCH}_3)$ (**6b**).

Scheme IV. Reactions of Vinylidene Complexes with $P(CH_3)_3$: Stereochemistry of C_{α} Attack

6. X-ray Crystal Structure of Methyl Acetylide Complex $(\eta^5-C_5H_5)Re(NO)(PPh_3)(C = CCH_3)$ (6b). We sought to determine whether a distortion of the ideally linear $Re-C_{\alpha} = C_{\beta}-R$ linkage in acetylide complexes 6a-d might contribute to the stereospecificity of C_{β} electrophilic attack. Hence, X-ray data were collected for methyl acetylide complex 6b as summarized in Table II. Refinement, described in the Experimental Section, yielded the structure shown in Figure 3. The near-linearity of the Re- $C_{\alpha} = C_{\beta} (Re-C1-C2)$ and $C_{\alpha} = C_{\beta}-C_{\gamma} (C1-C2-C3)$ linkages $(176-177^\circ)$ is evident. Positional parameters, bond distances, and bond angles are summarized in Tables VII-IX.

7. Rates of Interconversion of Vinylidene Complex Re—C—C Isomers. The rates of Re—C—C isomerization of vinylidene complexes ac-3b-dCF₃SO₃⁻ were measured as outlined in Table X. The $ac \Rightarrow sc K_{eq}$, which were needed to extract k_1 from k_{obsd} , did not change significantly over the temperature range of the rate measurements. The k_1 values gave the activation parameters summarized in Table X.

Control experiments were conducted to probe whether Re= C=C isomerization might occur by a C_{β} deprotonation/protonation mechanism. First, similar isomerization rates and acti-

Figure 4, Comparison of vacant acceptor orbitals in (a) alkylidene and (b) vinylidene ligands.

vation parameters were obtained for methyl phenyl vinylidene complex ac-7cFSO₃⁻ (Table X), which lacks a C_{β} proton. Second, the concentration of the $CF_3SO_3^-$ counteranion, the most plausible proton carrier, was varied. The isomerization rate of *ac*- $3dCF_3SO_3^-$ was measured in the presence of added (*n*- $C_4H_9)_4N^+CF_3SO_3^-$ (0.27 equiv). This gave $k_1 = 6.20 \times 10^{-4} \text{ s}^{-1}$ (25.4 °C), slightly lower than that without added triflate (6.75 × 10⁻⁴ s⁻¹, 24.6 °C). Tetrafluoroborate complexes ac-3cBF₄⁻ and ac-3dBF₄ were generated from HBF₄·Et₂O and the corresponding acetylide complexes at -78 °C. Their isomerization rates ($k_1 =$ $6.27 \times 10^{-4} \text{ s}^{-1} (22.2 \text{ °C}) \text{ and } 5.27 \times 10^{-4} \text{ s}^{-1} (25.4 \text{ °C})) \text{ were}$ comparable to those in Table X. Hence, it is concluded that Re=C=C isomerization occurs predominantly or exclusively by simple bond rotation.

The ¹H NMR spectra of parent vinylidene complex 3aCF₃SO₃, methylvinylidene complex 3bCF₃SO₃⁻, and dimethylvinylidene complex 7bFSO3 were recorded at 110 °C and 200 MHz. No coalescence of C_{β} proton or methyl resonances was observed. This bounds $\Delta G^*_{110^{\circ}C}$ for Re=C=C isomerization in these compounds as \geq 18 kcal/mol.

8. Photochemistry of Vinylidene Complexes. The (80 ± 2) :(20 \pm 2) equilibrium mixtures of sc/ac Re=C=C isomers of arylvinylidene complexes 3c-dCF₃SO₃⁻ were irradiated with a Hanovia 450 W lamp (CD₂Cl₂, -78 °C). Analysis by ¹H NMR showed clean formation of (50 ± 2) : (50 ± 2) photostationary states of sc/ac isomers. The samples were allowed to return to thermal equilibrium in the dark, and additional irradiation cycles were conducted without apparent sample deterioration.

9. Reactions of Vinylidene Complexes with Nucleophiles. We sought to determine whether the above vinylidene complexes underwent, like their alkylidene complex counterparts, stereospecific nucleophilic attack at C_{α} . First, dimethylvinylidene complex 7bCF₃SO₃⁻ was prepared in situ from methyl acetylide complex 6b and $CF_3SO_3CH_3$ and then treated with $P(CH_3)_3$. This gave the vinyl phosphonium salt $[(\eta^5 \cdot C_5 H_5) \text{Re}(\text{NO})(\text{PPh}_3)(\text{C-}$ $(P(CH_3)_3) = C(CH_3)_2)^+ CF_3SO_3^- (8CF_3SO_3^-)$ in 60% yield after recrystallization (Scheme IV).

A (98 \pm 2):(2 \pm 2) mixture of the *ac/sc* isomers of methylvinylidene complex 3bCF₃SO₃⁻ was generated as described above and treated with P(CH₃)₃ at -78 °C (Scheme IV). This gave, as assayed by ¹H NMR at -80 °C, a (98 \pm 2):(2 \pm 2) mixture of vinyl phosphonium salts (Z)- and (E)- $[(\eta^{5}-C_{5}H_{5})Re(NO) (PPh_3)(C(P(CH_3)_3)=CHCH_3)]^+CF_3SO_3^-$ ((Z) and (E)- $9CF_3SO_3^-$; Scheme IV). Workup gave (Z)- $9CF_3SO_3^-$ ($^3J_{PC=CH}$ = 36.3 Hz) in 57% yield. In a parallel experiment, a (95 ± 2) :(5 \pm 2) mixture of the *sc/ac* isomers of **3b**CF₃SO₃⁻ was generated by the low-temperature dissolution of a crystalline sample, as described above. Subsequent reaction with P(CH₃)₃ at -78 °C gave a (95 ± 2) : (5 ± 2) mixture of (E)- and (Z)-9CF₃SO₃⁻. Workup gave (E)-9CF₃SO₃⁻ (${}^{3}J_{PC=CH} = 60.7$ Hz) in 80% yield. Neither (Z)- or (E)-9CF₃SO₃⁻ isomerized in CD₂Cl₂ (1 day, 22 °C). The (Z)/(E) assignments were made from previous observations that vinyl phosphonium salts, including related iron complexes $[(\eta^5 - C_5H_5)Fe(CO)(PPh_3)(C(PPhR_2)=CH_2)]^+$, exhibit ${}^{3}J_{PC=CHtrans}$ that are considerably greater than ${}^{3}J_{PC=CHcis}$. ^{5b,29} These data establish that nucleophilic attack upon C_{α} of vinylidene complexes 3CF₃SO₃⁻ occurs stereospecifically from a direction anti to the bulky PPh₃ ligand, as illustrated by transition state XIII in Scheme IV.

Discussion

1. Vinylidene and Acetylide Complexes. Structure about Rhenium. It is interesting to compare the structures of na-

phthylvinylidene complex $sc-3dPF_6^-$ and methyl acetylide complex **6b** to those of other $[(\eta^5 \cdot C_5 H_5) \text{Re}(\text{NO})(\text{PPh}_3)(X)]^{n+}$ complexes. First, both exhibit the ca. 90° P-Re-N, P-Re-C1, and N-Re-C1 bond angles noted earlier for this formally octahedral class of compounds (Tables V and IX).^{22a,23,24}

The Re= C_{α} double bond in naphthylvinylidene complex sc- $3dPF_6$ (1.840 (17) Å) is, as expected, much shorter than the Re- C_{α} single bonds in alkyl complexes (-)-(R)-(η^{5} -C₅H₅)Re-(NO)(PPh₃)(CH₂C₆H₅) (2.203 (8) Å)²³ and (SS,RR)-(η^{5} - C_5H_5 Re(NO)(PPh₃)(CH(CH₂C₆H₅)C₆H₅) (2.215 (4) Å).^{22a} However, it is also somewhat shorter than the Re=C double bond in benzylidene complex $[(\eta^5 - C_5 H_5)Re(NO)(PPh_3)(= CHC_6H_5)]^+PF_6^- (1.949 (6) Å).^{22a}$ This additional 5-6% contraction can be attributed to two factors. First, vinylidene ligands are superior π acids.^{20,30} Whereas alkylidene ligands have only a p acceptor orbital on C_{α} , vinylidene ligands have an additional, higher energy, π^* acceptor orbital (Figure 4). In sc-3dPF₆, the π^* orbital would bond with an occupied d orbital that is of lower energy than, and orthogonal to, that shown in III.³⁰ Second, bonds to sp hybridized carbons (vinylidene C_{α}) are intrinsically shorter than those to sp² hybridized carbons (alkylidene C_{α}). For example, the C=C bond in allene $(1.31 \text{ Å}, \text{sp}^2/\text{sp})$ is contracted 2-3% from that in ethylene $(1.34 \text{ Å}, \text{sp}^2/\text{sp}^2)$.³¹

The Re- C_{α} single bond in methyl acetylide complex **6b** (2.066) (7) Å) is contracted 6-7% from those in analogous rhenium alkyl complexes. This also follows from the electronic and hybridization effects described above. However, Fenske, and Kostić have noted that both C_{α} acceptor orbitals in acetylide ligands (π^* , π^*) are of higher energy than those in vinylidene ligands and accordingly rank acetylide ligands as poor π acceptors.²⁰ Also, the H₃C-C bond in propyne $(1.46 \text{ Å}; \text{sp}^3/\text{sp})$ is shortened 5% from that in propane $(1.54 \text{ Å}; \text{sp}^3/\text{sp})^{.31}$ Hence, hybridization effects are likely responsible for most of the Re-C_{α} bond contraction in **6b**. Thus, acetylide complex resonance form II (eq 1) has a much greater influence upon ligand reactivity than structure.32

2. Structures of Related Complexes. Although crystal structures of many vinylidene^{2,4,6b-d,8a,b,9b,10b,11,12b,c} and acetylide^{6c,18,19b-e} complexes have been determined, several are particularly relevant to this study. First, the structures of two other rhenium vinylidene complexes, $(\eta^5 - C_5H_5)Re(CO)_2(=C=C(C_6H_5)R)$ (10) and

(29) Seyferth, D.; Fogel, J. J. Organomet. Chem. 1966, 6, 205.

^{(30) (}a) Schilling, B. E. R.; Hoffmann, R.; Lichtenberger, D. L. J. Am. Chem. Soc. 1979, 101, 585. (b) Schilling, B. E. R.; Hoffmann, R.; Faller, J. W. Ibid. 1979, 101, 592.
(31) March, J. A. Advanced Organic Chemistry, 3rd ed.; Wiley: New York, 1985; pp 18-19.

⁽³²⁾ Yneamines are, like acetylide complexes 6, nucleophilic at C_{β} , but none have been structurally characterized to our knowledge.²¹ It would be of interest to compare their sp 3 /sp nitrogen-carbon bond lengths with the sp 3 /sp 3 nitrogen-carbon bond lengths in saturated amines.

Table I. Spectroscopic Characterization of Rhenium Vinvlidene Complexes

complex	$1R^a (cm^{-1})$	¹ H NMR ^b (δ)	¹³ C{ ¹ H} NMR ^c (ppm)	³¹ P{ ¹ H} NMR ^d (ppm)
I+ Re ON II PPh3 II CF3SO3 H 3a CF3SO3	ν _{N=O} 1739 (s) ν _{C=C} 1641 (m)	7.60–7.20 (m, $3C_6H_5$) 6.02 (s, C_5H_5) 5.50 (dd, ${}^2J_{HH} = 20.0$, ${}^4J_{HP} = 1.0$, sc-H) 4.87 (dd, ${}^2J_{HH} = 20.0$, ${}^4J_{HP} = 1.4$, ac-H)	329.9 (d, $J = 9.9$, C_a) 120.4 (q, $J_{CF} = 319.6$, CF_3) 113.8 (s, C_β) 98.6 (s, C_5H_5) PPh ₃ at: 132.9 (d, $J = 11.5$, o) 132.7 (d, $J = 2.8$, p) 129.7 (d, $J = 11.8$, m) 129.7 (d, $J = 62.2$, i)	17.0 (s)
ON	ν _{N≡0} 1733 (s) ν _{C≕C} 1664 (m)	7.90-7.25 (m, $3C_6H_5$) 6.19 (dq, ${}^3J_{HH}$ = 8.0, ${}^4J_{HP}$ = 1.0, ==CH) 6.03 (s, C_5H_5) 1.24 (d, ${}^3J_{HH}$ = 8.0, CH ₃)	328.5 (d, $J = 10.1$, C_{α}) 126.0 (s, C_{β}) 120.6 (q, $J_{CF} = 319.9$, CF_3) 98.3 (s, C_5H_5) 7.9 (s, CH_3) PPh ₃ at: 133.0 (d, $J = 10.7$, o) 132.6 (s, p) 130.5 (d, $J = 61.9$, i) 129.7 (d, $J = 9.8$, m)	18.7 (s)
$CF_{3}SO_{3}^{-}$	ν _{N=0} 1733 (s) ν _{C=C} 1664 (m)	7.90-7.25 (m, $3C_6H_5$) 6.02 (s, C_5H_5) 5.40 (dq, ${}^3J_{HH}$ = 7.8, ${}^4J_{HP}$ = 1.0, ==CH) 1.91 (d, ${}^3J_{HH}$ = 7.8, CH ₃)	329.7 (d, $J = 10.5$, C_{α}) 125.3 (s, C_{β}) 120.6 (q, $J_{CF} = 319.9$, CF_3) 98.5 (s, C_5H_5) 10.0 (s, CH_3) PPh ₃ at: 133.0 (d, $J = 11.0$, o) 132.6 (s, p) 129.8 (d, $J = 64.0$, i) 129.8 (d, $J = 11.1$, m)	18.3 (s)
$ \begin{array}{c} $	ν _{N≡O} 1731 (s) ν _C c 1651 (m)	7.75-7.20 (m, $3C_6H_5$) 7.02 (s, =CH) 7.01 (m, 1 H of C_6H_5) 6.85 (t, $J_{HH} = 7.7$, 2 H of C_6H_5) 6.50 (d, $J_{HH} = 7.6$, 2 H of C_6H_5) 6.04 (s, C_5H_5)	332.2 (d, $J = 9.6$, C_{α}) 124.6 (s, C_{β}) 120.4 (q, $J_{CF} = 319.7$, CF_3) 98.9 (s, C_5H_5) CPh at: 133.2 (s, <i>i</i>) 128.3 (s, <i>m</i>) 127.8 (s, <i>p</i>) 126.4 (s, <i>o</i>) PPh ₃ at: 133.0 (d, $J = 10.6$, <i>o</i>) 132.1 (s, <i>p</i>) 130.2 (d, $J = 58.4$, <i>i</i>) 129.2 (d, $J = 11.0$, <i>m</i>) ^{<i>e</i>}	18.3 (s)
SC-3C CF ₃ SO ₃	ν _{N=0} 1731 (s) ν _{C=C} 1651 (m)	7.75-7.20 (m, $4C_6H_5$) 6.14 (d, ${}^4J_{HP} = 1.4$, ==CH) 6.03 (s, C_5H_5)	335.6 (d, $J = 10.8$, C_{α}) 127.0 (s, C_{β}) 120.6 (q, $J_{CF} = 320.0$, CF ₃) 98.9 (s, C_5H_5) CPh at: 133.2 (s, <i>i</i>) 131.7 (s, <i>p</i>) 129.5 (s, <i>o</i>) 129.1 (s, <i>m</i>) PPh ₃ at: 133.0 (d, $J = 11.4$, <i>o</i>) 132.8 (d, $J = 2.7$, <i>p</i>) 129.8 (d, $J = 11.8$, <i>m</i>) 128.4 (d, $J = 56.3$, <i>i</i>)	17.0 (s)
ac 3d CF3SO3-	ν _{N=0} 1734 (s) ν _{C=C} 1641 (m)	7.90-7.17 (m, $3C_6H_5$, 6 H of $C_{10}H_7$, ==CH) 6.47 (d, $J = 7.1$, 1 H of $C_{10}H_7$) 6.03 (s, C_5H_5)	332.9 (d, $J = 9.3$, C_{α}) 120.2 (q, $J_{CF} = 318.8$, CF_3) 98.6 (s, C_5H_5) $C_{10}H_7$ and C_{β} at: 133.9 (s), 132.8 (s), 132.2 (s) 127.9 (s), 127.5 (s), 127.1 (s) 126.1 (s), 126.0 (s), 126.0 (s) 125.4 (s), 124.5 (s)' PPh ₃ at: 132.5 (d, $J = 17.0$, o) 132.4 (s, p) 129.5 (d, $J = 11.4$, m) 129.2 (d, $J = 62.3$, i) ^g	16.8 (s)

Table I (Continued)

complex	$1R^{a} (cm^{-1})$	¹ H NMR ^b (δ)	¹³ C{ ¹ H} NMR ^c (ppm)	³¹ P{ ¹ H} NMR ^d (ppm)
$ \begin{array}{c} $	ν _{N≡O} 1734 (s) ν _{C=C} 1641 (m)	7.70-7.20 (m, $3C_6H_5$, $C_{10}H_7$) 6.83 (s, =CH) 6.02 (s, C_5H_5)	336.3 (d, $J = 10.8$, C_{α}) 120.7 (q, $J_{CF} = 320.5$, CF_3) 99.1 (s, C_5H_5) $C_{10}H_7$ and C_{β} at: 133.8 (s), 132.2 (s), 129.4 (s) 128.1 (s), 127.9 (s), 126.9 (s) 126.8 (s), 126.1 (s), 125.3 (s) 124.3 (s) ^{f/h} PPh ₃ at: 133.0 (d, $J = 11.5$, o) 132.8 (d, $J = 2.7$, p) 129.8 (d, $J = 11.7$, m) 129.4 (d, $J = 62.4$, i)	16.6 (s)
ON II PPh3 C FSO3 H ₃ C CH3 7b FSO3	ν _{N==0} 1748 (s) ν _{C==C} 1654 (m)'	7.62-7.32 (m, $3C_6H_5$) 6.02 (s, C_5H_5) 1.96 (s, <i>sc</i> -CH ₃) 1.24 (s, <i>ac</i> -CH ₃)	327.9 (d, $J = 11.1$, C_{α}) 136.8 (s, C_{β}) 98.2 (s, $C_{5}H_{5}$) 17.5 (s, <i>sc</i> -CH ₃) 13.8 (s, <i>ac</i> -CH ₃) PPh ₃ at: 133.2 (s, <i>p</i>) 132.8 (d, $J = 18.9$, <i>o</i>) 131.1 (d, <i>i</i>) ² 129.8 (d, $J = 12.8$, <i>m</i>)	18.4 (s)

^a Thin film unless noted; $v_{N=0}$ and $v_{C=C}$ for 3b-d were assigned from spectra of equilibrium mixtures. ^b H NMR spectra were recorded at 200 or 300 MHz in CDCl₃ at ambient probe temperature and were referenced to internal (CH₃)₄Si. All couplings are in Hz. ^{c13}C NMR spectra were recorded at 50 or 75 MHz in CDCl₃ at ambient probe temperature and were referenced to internal (CH₃)₄Si unless noted. All couplings are in Hz and are to ³¹P unless noted. Assignments of ipso (*i*), para (*p*), meta (*m*), and ortho (*o*) carbon resonances were made as described in footnote c of Table 1 in the following: Buhro, W. E.; Georgiou, S.; Fernández, J. M.; Patton, A. T.; Strouse, C. E.; Gladysz, J. A. *Organometallics* **1986**, 5, 956. ^{d 31}P NMR spectra were recorded at 32 MHz in CDCl₃ at ambient temperature with an external lock and were referenced to external 85% H₃PO₄. ^{e In CD₂Cl₂ at -80 °C. ${}^{f}C_{\beta}$ resonance cannot be distinguished from the naphthyl resonances. ^gAt 0 °C. ^hOne resonance obscured by PPh₃ resonances. ^{f In CHCl₃.}}

Table II. Summary of Crystallographic Data for $sc-[(\eta^{5}-C_{5}H_{5})Re(NO)(PPh_{3})(=C=CH(1-C_{10}H_{7}))]^{+}PF_{6}^{-}(sc-3dPF_{6}^{-})$ and $(\eta^5 - C_5 H_5) \operatorname{Re}(\operatorname{NO})(\operatorname{PPh}_3)(C \equiv \operatorname{CCH}_3)$ (6b)

5 57 C 7C	3/1 3/1 /	
compd	sc-3dPF ₆ -	6b
mol formula	$C_{35}H_{28}F_6NOP_2Re$	C ₂₆ H ₂₃ NOPRe
formula wt	840.76	582.66
cryst system	monoclinic	triclinic
space group	C2/c	РĪ
cell dimensions		
a, Å	25.768 (8)	8.055 (4)
b, Å	11.215 (3)	16.419 (10)
<i>c</i> , Å	23.475 (8)	9.084 (5)
α , deg		91.46 (5)
β , deg	104.08 (3)	68.57 (4)
γ , deg		77.36 (4)
V, Å ³	6580 (4)	1095.6 (8)
Ζ	8	2
temp of collectn	21 (1) °C	−158 (5) °C
$d_{\text{calcd}}, \text{ g/cm}^3$	1.70	1.78
$d_{\text{obsd}}, \text{g/cm}^3 (22 \text{ °C})$	1.71	1.79
cryst dimensns, mm	$0.19 \times 0.24 \times 0.24$	$0.14 \times 0.16 \times 0.18$
radiation, Å	λ (Μο Κα) 0.71069	λ (Mo Kα) 0.71069
data collectn method	$\theta - 2\theta$	$\theta - 2\theta$
scan speed, deg/min ⁻¹	2.4	6.0
reflens measd	$+h,+k,\pm l; 3-50^{\circ}$	+h,±k,±l; 3-50°
scan range	$K\alpha_1 - 1.0$ to	$K\alpha_1 - 1.0$ to
	$K\alpha_2 + 1.3$	$K\alpha_2 + 1.0$
no. of reflens between std	97	97
total unique data	5828	3975
cutoff for obsd data	$I > 1.5\sigma(I)$	$I > 3.0\sigma(I)$
obsd data	4197	3852
abs coeff (μ), cm ⁻¹	39.00	55.32
method of refinement	full matrix least squares	full matrix least squares
no. of variables	420	266
$R = \sum (F_{o} - F_{c}) / \sum F_{o} $	0.063	0.041
$R_{w} = \sum_{i=1}^{\infty} (F_{o} - F_{c}) w^{1/2} / \sum_{i=1}^{\infty} F_{o} w^{1/2} / \sum_{i=1}^{\infty} F_{$	0.054	0.051
goodness of fit	1.43	1.75
weighting factor, w	$1/(\sigma^2(F_0) +$	$1/(\sigma^2(F_0) +$
	$0.0016(F_{o})^{2})$	$0.0045(F_{o})^{2})$

trans-(dppe)₂Re(Cl)(=C=CHC₆H₅) (11),^{27e} have been reported.¹¹ They exhibit longer Re= C_{α} bonds (1.90 (2), 2.046 (8) Å) than $sc-3dPF_6^-$ (1.840 (17) Å). This can be attributed to the greater π basicity of the $(\eta^5 \cdot C_5 H_5) \operatorname{Re}(\operatorname{NO})(\operatorname{PPh}_3)^+$ fragment. Osmium *tert*-butylvinylidene complex $[(\eta^5-C_5Me_5)Os(CO) (PPh_3)(=C=CH(t-C_4H_9))]^+ BF_4^-(12)$, which is isoelectronic with $3a-dCF_3SO_3^-$, has been prepared by Geoffroy.^{10b} It has a M=C_{α} bond length (1.879 (6) Å) closer to that of sc-3dPF₆.

The alkylidene/vinylidene Re= C_{α} bond contraction noted above has precedent. For example, the $Mn=C_{\alpha}$ bond in manganese vinylidene complex $(\eta^5 - C_5H_5)Mn(CO)_2(=C=C(CH_3)_2)$ (1.79 (2) Å)^{13c} is shorter than that in alkylidene complex (η^5 - C_5H_5)Mn(CO)₂(=C(C₆H₅)₂) (1.885 (2) Å).³³ Similarly, the Ru= C_{α} bonds in ruthenium vinylidene complexes [$(\eta^5 - C_5 H_5)$ - $Ru(L)_2(=C=CRCH_3)^+X^-(L = phosphine; R = H, C_6H_5; 1.839$ (10)-1.863 (10) Å) are shorter than those in α -methoxycarbene complexes $[(\eta^5 - C_5H_5)Ru(L)_2(=C(OCH_3)CH_2R)]^+PF_6^-$ (1.93 (2)-1.959 (6) Å).^{6c,9b}

To our knowledge, 6d is the only structurally characterized rhenium acetylide complex. However, the structure of an acetylide complex of a neighboring third-row metal, $(\eta^5-C_5H_5)W(CO)_2$ - $(P(CH_3)_3)(C \equiv C(i \cdot C_3H_7))$, has been reported $(W-C_{\alpha}2.134(11))$ Å).^{19b} This complex and **6b** have C = C bond lengths (1.205(15), 1.192 (11) Å) identical with those in organic acetylenes (1.20 Å).³¹ Although longer $C \equiv C$ bonds might be expected in acetylide complexes as a result of resonance form II, it is believed that the lengths of bonds of bond order between two and three are not very sensitive to small changes in bond order.³⁴

3. M=C=C Isomerization in Vinylidene Complexes. Several factors made it difficult to obtain accurate rate data for vinylidene complex Re=C=C isomerizations over a wide range of temperatures (Table X-A). However, the available data show ΔG^* (21 °C) to be relatively constant, with the ΔH^* increase for $ac-3/c/d/bCF_3SO_3^- \rightarrow sc-3/c/d/bCF_3SO_3^-$ offset by a ΔS^* increase (Table X-B). This suggests an isokinetic relationship,³⁵ with an isokinetic temperature of 124 °C. Such behavior is associated with a common rate-determining step and has been observed previously for cis/trans isomerizations of stilbenes and

⁽³³⁾ Herrmann, W. A.; Hubbard, J. L.; Bernal, 1.; Korp, J. D.; Haymore, B. L.; Hillhouse, G. L. Inorg. Chem. 1984, 23, 2978.
 (34) Cotton, F. A.; Wing, R. M. Inorg. Chem. 1965, 4, 314.

Table III. Atomic Coordinates of Non-Hydrogen Atoms in $sc - [(\eta^5 - C_5H_5)Re(NO)(PPh_3)(=C=CH(1 - C_{10}H_7))]^+PF_6^-(sc - 3dPF_6^-)$

atom	x	У	Ζ
Re	0.143 380 (15)	0.070 09 (4)	0.220330(19)
P 1	0.08013 (9)	0.04261 (22)	0.126 89 (11)
0	0.057 19 (35)	0.13208 (85)	0.276 85 (41)
Ν	0.091 77 (36)	0.104 12 (73)	0.253 25 (38)
C1	0.14280 (37)	-0.09219 (150)	0.231 63 (41)
C2	0.14055 (46)	-0.214 50 (110)	0.239 58 (53)
C11	0.15965 (39)	-0.269 03 (97)	0.300 02 (50)
C12	0.192 57 (42)	-0.21268 (102)	0.34567 (52)
C13	0.21071 (42)	-0.26286 (112)	0.401 31 (48)
C14	0.19541 (48)	-0.377 08 (124)	0.41106 (51)
C16	0.108 82 (83)	-0.61294 (145)	0.329 59 (88)
C15	0.14281 (74)	-0.554 99 (130)	0.373 17 (66)
C17	0.08961 (69)	-0.56292 (143)	0.27412 (70)
C18	0.10542 (54)	-0.45071 (118)	0.262 69 (63)
C19	0.14217(41)	-0.384 92 (100)	0.308 10 (54)
C20	0.16083 (46)	-0.44023 (103)	0.36410 (54)
C31	0.23503 (37)	0.077 51 (130)	0.25569 (63)
C32	0.223 68 (42)	0.074 73 (128)	0.195 69 (56)
C33	0.196 99 (46)	0.180 96 (162)	0.173 04 (59)
C34	0.191 09 (43)	0.251 04 (112)	0.222 00 (77)
C35	0.213 42 (49)	0.183 01 (130)	0.274 11 (55)
C41	0.114 49 (38)	0.020 06 (93)	0.068 76 (42)
C42	0.150 07 (40)	-0.07272(99)	0.07169 (47)
C43	0.179 53 (46)	-0.088 03 (110)	0.028 98 (58)
C44	0.16949 (58)	-0.00670 (136)	-0.01822(57)
C45	0.132 55 (51)	0.084 35 (132)	-0.022 04 (53)
C46	0.105 25 (42)	0.097 51 (106)	0.021 22 (50)
C52	-0.018 34 (38)	0.15329 (94)	0.076 98 (43)
C51	0.035 24 (35)	0.168 31 (86)	0.10503 (42)
C53	-0.05055 (41)	0.252 20 (111)	0.058 69 (48)
C54	-0.029 53 (51)	0.364 39 (115)	0.067 03 (54)
C55	0.023 39 (54)	0.381 51 (114)	0.09461 (68)
C56	0.055 90 (42)	0.283 10 (105)	0.11331 (55)
C61	0.036 27 (33)	-0.086 51 (87)	0.125 13 (42)
C62	0.006 00 (39)	-0.093 88 (99)	0.166 97 (46)
C63	-0.02688 (41)	-0.189 59 (116)	0.167 34 (52)
C64	-0.02941 (44)	-0.28205 (103)	0.127 51 (59)
C65	0.000 45 (49)	-0.27419 (98)	0.086 16 (51)
C66	0.03399 (43)	-0.177 25 (96)	0.086 15 (48)
P2	0.17007 (14)	-0.54268 (30)	0.580 33 (15)
F1	0.113 59 (41)	-0.590 44 (142)	0.567 00 (64)
F2	0.187 58 (52)	-0.657 82 (83)	0.61638 (41)
F3	0.228 66 (42)	-0.511 56 (140)	0.597 02 (66)
F4	0.15287 (74)	-0.426 87 (98)	0.546 66 (48)
F5	0.163 54 (46)	-0.478 26 (90)	0.63683 (38)
F6	0.17630 (53)	-0.604 02 (97)	0.523 52 (38)

Table IV. Bond Distances in $sc-3dPF_6^-$ (Å)

Re-C1	1.840 (17)	C32-C33	1.413 (18)
C1-C2	1.387 (17)	C33-C34	1.431 (18)
C2-C11	1.513 (15)	C34-C35	1.438 (17)
Re-N	1.735 (9)	C41-C42	1.377 (14)
N-O	1.200 (10)	C41-C46	1.388 (13)
Re-C31	2.306 (9)	C42-C43	1.408 (14)
Re-C32	2.281 (11)	C43-C44	1.410 (17)
Re-C33	2.331 (12)	C44-C45	1.384 (18)
Re-C34	2.368 (11)	C45-C46	1.377 (15)
Re-C35	2.312 (11)	C51-C52	1.388 (12)
Re-P1	2.413 (3)	C51-C56	1.389 (14)
P1-C41	1.816 (10)	C52-C53	1.389 (14)
P1-C51	1.817 (9)	C53-C54	1.365 (16)
P1-C61	1.831 (9)	C54-C55	1.373 (16)
C11-C12	1.351 (14)	C55-C56	1.391 (15)
C11-C19	1.403 (14)	C61-C66	1.360 (13)
C12-C13	1.394 (14)	C61-C62	1.397 (12)
C13-C14	1.376 (16)	C62-C63	1.369 (14)
C14-C20	1.426 (16)	C63-C64	1.387 (15)
C15-C16	1.342 (21)	C64-C65	1.380 (15)
C15-C20	1.402 (17)	C65-C66	1.389 (14)
C16-C17	1.393 (22)	P2-F1	1.510 (10)
C17-C18	1.369 (17)	P2-F2	1.550 (10)
C18-C19	1.444 (17)	P2-F3	1.506 (10)
C19-C20	1.427 (15)	P2-F4	1.529 (10)
C31–C32	1.367 (16)	P2-F5	1.555 (9)
C31-C35	1.419 (17)	P2-F6	1.543 (9)

Senn et al.

Table V. Key Bond Angles in $sc-3dPF_6^-$ (deg)

N-Re-P1	90.7 (3)	Re-P1-C51	113.6 (3)
C1-Re-P1	88.7 (3)	Re-P1-C61	113.5 (3)
C1-Re-N	96.9 (4)	C32-C31-C35	109.4 (12)
Re-C1-C2	178.1 (9)	C31-C32-C33	109.3 (13)
Re-N-O	177.2 (8)	C32-C33-C34	107.3 (12)
C1-Re-C31	91.6 (5)	C33-C34-C35	107.0 (12)
C1-Re-C32	95.7 (5)	C31-C35-C34	106.8 (12)
C1-Re-C33	128.5 (5)	C42-C41-C46	119.6 (10)
C1-Re-C34	150.2 (4)	P1-C41-C42	120.5 (8)
C1-Re-C35	119.7 (5)	P1-C41-C46	119.8 (8)
C1-C2-C11	120.7 (12)	C41-C42-C43	121.6 (10)
C12-C11-C19	119.1 (11)	C42-C43-C44	117.0 (11)
C12-C11-C2	123.6 (11)	C45-C44-C43	121.3 (11)
C19-C11-C2	117.3 (11)	C46-C45-C44	119.9 (11)
C11-C12-C13	123.8 (11)	C45-C46-C41	120.5 (11)
C14-C13-C12	119.2 (11)	C52-C51-C56	118.8 (9)
C13-C14-C20	119.0 (11)	P1-C51-C52	122.1 (8)
C16-C15-C20	120.5 (14)	P1-C51-C56	118.9 (7)
C15-C16-C17	122.3 (15)	C51-C52-C53	120.0 (10)
C18-C17-C16	119.9 (15)	C54-C53-C52	120.4 (10)
C17-C18-C19	119.8 (14)	C53-C54-C55	120.7 (11)
C11-C19-C20	118.7 (11)	C54-C55-C56	119.4 (12)
C11-C19-C18	123.2 (12)	C51-C56-C55	120.7 (10)
C20-C19-C18	118.1 (11)	C66-C61-C62	119.2 (9)
C15-C20-C14	120.4 (13)	P1-C61-C66	122.2 (7)
C15-C20-C19	119.3 (13)	P1-C61-C62	118.6 (8)
C14-C20-C19	120.2 (11)	C63-C62-C61	120.2 (10)
C41-P1-C51	106.8 (5)	C62-C63-C64	120.6 (10)
C41-P1-C61	106.5 (5)	C65-C64-C63	118.9 (10)
C51-P1-C61	105.1 (4)	C64-C65-C66	120.2 (10)
Re-P1-C41	110.8 (3)	C61-C66-C65	120.7 (9)

azo compounds.^{35a} However, few examples of isokinetic relationships are known in inorganic and organometallic reactions.^{35b}

Interestingly, the activation parameters for $sc \rightarrow ac$ Re=C isomerization of alkylidene complexes $[(\eta^5-C_5H_5)Re(NO) (PPh_3)(=CHR)]^+PF_6^-$ (IV \rightarrow V, Figure 1b; R = C₆H₅,^{22a} CH₃,^{22b} mesityl;^{22c} ΔH^* = 20.9, 17.4, 18.8 kcal/mol; ΔS^* = -3.8, -7.3, 0.5 eu) are quite close to those for $ac \rightarrow sc$ Re=C=C isomer-ization in Table X.³⁶ This is in one sense surprising, since the =CRR' π terminus is farther from the metal in vinylidene complexes. This should reduce the steric component of the isomerization barrier.37 Hence, there is likely a greater electronic component of the isomerization barrier in vinylidene complexes. Unfortunately, this is impossible to ascribe to a single factor, since the extra $C_{\alpha} = C_{\beta}$ unsaturation in vinylidene complexes creates a complex array of conformation-dependent attractive and repulsive metal/ \dot{C}_{α} orbital interactions.^{20,30}

The K_{eq} for $sc \rightleftharpoons ac$ Re=C isomerization in alkylidene complexes $[(\eta^5 \cdot C_5H_5)\text{Re}(\text{NO})(\text{PPh}_3)(\text{=CHR})]^+\text{PF}_6^-$ (R = CH₃,^{22b} C_6H_5 :^{22a} $K_{eq} = 9.0 \pm 1.0, \ge 99$) are, however, considerably greater than those for $ac \rightleftharpoons sc$ Re=C=C isomerization in Table X. This can be attributed to the larger metal/=CRR' separation in vinylidene complexes. Also, photolysis of ac/sc equilibrium mixtures of alkylidene complexes $[(\eta^5 \cdot C_5H_5)Re(NO)(PPh_3)(=CHR)]^+$ $PF_6^-(R = CH_2CH_3)^{38} C_6H_5^{22a} mesityl^{22c})$ gives, as with vinylidene complexes 3c-dCF_3SO_3⁻, ca. 50:50 sc/ac photostationary states. This suggests similar initial metal-to-ligand charge-transfer (MLCT) transitions to give excited states with formal Re- C_{α} single bonds.39

^{(35) (}a) Leffler, J. E.; Grunwald, E. Rates and Equilibria of Organic Reactions; Wiley: New York, 1963; Chapter 9. (b) Wilkins, R. G. The Study of Kinetics and Mechanism of Reactions of Transition Metal Complexes; Allyn and Bacon: Boston, 1974; pp 100–101. (c) Giese, B. Acc. Chem. Res. **1984**, 17, 438. (d) Linert, W. Inorg. Chim. Acta **1988**, 141, 233. (36) (a) None of our data rigorously establish whether vinylidene complex Re= \mathbb{C} isomerization occurs via Re= \mathbb{C}_{α} or $\mathbb{C}_{\alpha} = \mathbb{C}_{\beta}$ bond rotation. However, since the barriers are similar to those for Re= \mathbb{C}_{α} isomerization normally requires much higher temperatures, ^{36b} we assume that Re= \mathbb{C}_{α} bond rotation; is occurring. (b) Gaiewski, J. J. Hydrocarbon Thermal Isomerization; Acis occurring. (b) Gajewski, J. J. Hydrocarbon Thermal Isomerization; Ac-ademic Press: New York, 1981; pp 17-18.

 ⁽³⁷⁾ Further, since a vinylidene substituent is directed at the bulky PPh₃ ligand in the Re=C=C ground states, steric interactions may be attenuated in the Re=C=C isomerization transition states.
 (38) McCormick, F. B.; Kiel, W. A.; Gladysz, J. A. Organometallics 1982, 100

^{1. 405.}

Rhenium Acetylide and Vinylidene Complexes

Table VI. Spectroscopic Characterization of Rhenium Acetylide Complexes

complex	$1R^a (cm^{-1})$	¹ H NMR ^b (δ)	¹³ C{ ¹ H} NMR (ppm)	${}^{31}P{}^{1}H{}^{d} NMR (ppm)$
	$ \nu_{N=0} 1654 (s) \nu_{C=C} 1947 (w) \nu_{=CH} 3282 (m) $	7.60-7.30 (m, $3C_6H_5$) 5.11 (s, C_5H_5) 2.53 (d, ${}^4J_{HP}$ = 2.4, ==CH)	111.7 (s, C_{β}) 90.4 (s, $C_{5}H_{5}$) 84.5 (d, $J = 15.4$, C_{α}) PPh ₃ at: 135.3 (d, $J = 60.0$, <i>i</i>) 133.7 (d, $J = 8.8$, <i>o</i>) 130.3 (s, <i>p</i>) 128.1 (d, $J = 8.0$, <i>m</i>)	18.9 (s)
ON C PPh3	$\nu_{N=0}$ 1650 (s) $\nu_{C=C}$ 2113 (w)	7.72-7.38 (m, $3C_6H_5$) 5.13 (s, C_5H_5) 2.05 (d, ${}^5J_{HP}$ = 3.0, CH ₃)	120.7 (s, C_{β}) 90.1 (s, $C_{5}H_{5}$) 71.7 (d, $J = 17.0$, C_{α}) 6.5 (s, CH_{3}) PPh ₃ at: 135.6 (d, $J = 55.0$, <i>i</i>) 133.9 (d, $J = 14.6$, <i>o</i>) 130.1 (d, <i>p</i>) 128.4 (d, $J = 12.2$, <i>m</i>)	20.2 (s)
ON C PPh ₃ C PPh ₃ C C C C C C C C C C C C C C C C C C C	ν _{N=0} 1652 (s) ν _{C=C} 2082 (w)	7.60–7.12 (m, $3C_6H_5$) 6.92–6.71 (m, C_6H_5) 5.24 (s, C_5H_5)	122.8 (s, C_{β}) 92.3 (d, $J = 22.1, C_{\alpha}$) 90.6 (s, C_5H_5) CPh at: 136.7 (s, i) 131.0 (s, o) 127.4 (s, m) 124.6 (s, p) PPh ₃ at: 135.5 (d, $J = 52.6, i$) 133.8 (d, $J = 10.6, o$) 130.2 (s, p) 128.3 (d, $J = 10.8, m$)	19.1 (s)
$ \begin{array}{c} \left(\right) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	ν _{N==0} 1657 (s) ν _{C==C} 2067 (w)	8.00 (m, 1 H of $C_{10}H_7$) 7.70 (m, 1 H of $C_{10}H_7$) 7.64-7.22 (m, 3C ₆ H ₅ , 4H of $C_{10}H_7$) 6.96 (m, 1 H of $C_{10}H_7$) 5.29 (s, C ₅ H ₅)	124.2 (s, C_{β}) 98.3 (d, $J = 17.0$, C_{α}) 90.6 (s, $C_{5}H_{5}$) $C_{10}H_{7}$ at: 133.0 (s), 132.8 (s) 127.9 (s), 127.4 (s) 127.0 (s), 125.8 (s) 125.2 (s), 125.1 (s) 125.0 (s), 124.9 (s) PPh ₃ at: 135.3 (d, $J = 52.8$, <i>i</i>) 133.5 (d, $J = 9.8$, <i>o</i>) 130.0 (d, $J = 2.5$, <i>p</i>) 128.1 (d, $J = 11.0$, <i>m</i>)	18.8 (s)

^aThin film. ^{b1}H NMR spectra were recorded at 300 MHz in CDCl₃ at ambient probe temperature and were referenced to internal $(CH_3)_4Si$. All couplings are in Hz. ^{c13}C NMR spectra were recorded at 50 or 75 MHz in CDCl₃ at ambient probe temperature and were referenced to internal $(CH_3)_4Si$. All couplings are in Hz and are to ³¹P. Assignments of ipso (*i*), para (*p*), meta (*m*), and ortho (*o*) carbon resonances were made as described in footnote c of Table 1 in the following: Buhro, W. E.; Georgiou, S.; Fernández, J. M.; Patton, A. T.; Strouse, C. E.; Gladysz, J. A. Organometallics 1986, 5, 956. ^{d31}P NMR spectra were recorded at 32 MHz in CDCl₃ at ambient probe temperature with an external lock and were referenced to external 85% H₃PO₄.

Several results from other laboratories are particularly relevant to our data. First, Consiglio has recently observed M=C=C isomerism in iron and ruthenium vinylidene complexes $[(\eta^{5}-C_{5}H_{5})M(L)_{2}(=C=CHR)]^{+}PF_{6}^{-}$ (L = 1/2 chiral diphosphine).^{9a,c,d} Depending upon substituents, K_{eq} range from 1.0 to ≥ 9.0 , and dynamic NMR experiments give $\Delta G^{*} = 9-10$ kcal/mol for M=C=C isomerization. Second, Hughes has placed an *upper* limit of $\Delta G^{*}_{-100^{\circ}C} = 8-9$ kcal/mol for Fe=C=C isomerization in dimethylvinylidene complex $[(\eta^{5}-C_{5}H_{5})Fe-(CO)(PPh_{3})(=C=C(CH_{3})_{2})]^{+}CF_{3}SO_{3}^{-.5b}$ This compound is analogous to rhenium complex 7bFSO_{3}^{-}, and the iron fragment $(\eta^{5}-C_{5}H_{5})Fe(CO)(PPh_{3})^{+}$ should have a HOMO similar to that of rhenium fragment $(\eta^{5}-C_{5}H_{5})Re(NO)(PPh_{3})^{+}$ (see III).³⁰ Hence, the electronic component of the M=C=C isomerization barrier is much lower in the iron vinylidene complex.

The osmium fragment $(\eta^5 - C_5 Me_5)Os(CO)(PPh_3)^+$ is also expected to have a HOMO similar to that shown in III.³⁰ However,

the *tert*-butylvinylidene ligand in the corresponding complex 12 adopts the Os=C=C conformation shown in Newman projection XIV. The Ph₃P-M-C_{β}-C torsion angle differs from that in *sc*-3dPF₆⁻ (Figure 2, bottom) by ca. 27°. Geoffroy has suggested that the greater bulk of the pentamethylcyclopentadienyl ligand magnifies steric conformation determining factors. This would direct the *tert*-butyl substituent toward the smaller CO ligand at the expense of some metal HOMO/C_{α} p orbital overlap. We agree with this analysis and also predict that low-temperature photolysis of 12 may allow detection of a second Os=C=C isomer.

4. Reactivity of Vinylidene and Acetylide Complexes. Mechanism of Asymmetric Induction. The reaction polarity of vinylidene and acetylide ligands was first systematically studied by Davison and Selegue.^{3a,c} They found that iron vinylidene and acetylide complexes $[(\eta^5 \cdot C_5 H_5)Fe(L)_2(X)]^{n+}$ exhibit significant C_{α} electrophilicity and C_{β} nucleophilicity, respectively. The related rhenium complexes **3a-d**CF₃SO₃⁻ and **6a-d** behave similarly. This reactivity has been probed theoretically by Fenske and Kostić.²³ They attribute the vinylidene ligand C_{α} electrophilicity to the LUMO character and localization and the acetylide ligand C_{β}

^{(39) (}a) Pourreau, D. B.; Geoffroy, G. L. Adv. Organomet. Chem. 1985, 24, 249. (b) The long wavelength UV absorptions of $3dCF_3SO_3^-$ are also likely due to MLCT transitions.^{39a}

Table VII.	Atomic Coordinates of Non-Hydrogen	Atoms in
$(\eta^5 - C_5 H_5)R$	$e(NO)(PPh_3)(C \equiv CCH_3)$ (6b)	

atom	x	у	Z
Re	-0.66726 (4)	-0.16493 (3)	-0.33533 (4)
P 1	-0.5895 (2)	-0.2358 (1)	-0.1356 (2)
0	-0.3138 (7)	-0.1150 (3)	-0.4702 (7)
N	-0.4538 (8)	-0.1388 (4)	-0.4129 (8)
C1	-0.5901 (10)	-0.2813 (5)	-0.4637 (9)
C2	-0.5524 (11)	-0.3463 (5)	-0.5441 (10)
C3	-0.5072 (13)	-0.4244 (6)	-0.6514 (12)
C11	-0.9625 (11)	-0.1032 (7)	-0.1555 (11)
C12	-0.8917 (13)	-0.0400 (6)	-0.2342 (14)
C13	-0.8568 (12)	-0.0574 (7)	-0.3963 (13)
C14	-0.9060 (14)	-0.1307 (6)	-0.4188 (12)
C15	-0.9734 (11)	-0.1604 (6)	-0.2687 (14)
C21	-0.3885 (10)	-0.3259 (5)	-0.2023 (9)
C22	-0.3921 (11)	-0.4031 (5)	-0.1399 (11)
C23	-0.2335 (12)	-0.4679 (5)	-0.1908 (12)
C24	-0.0702 (12)	-0.4554 (6)	-0.3032 (11)
C25	-0.0653 (11)	-0.3793 (6)	-0.3633 (10)
C26	-0.2245 (11)	-0.3146 (5)	-0.3152 (9)
C31	-0.5414 (9)	-0.1703 (5)	0.0035 (8)
C32	-0.6395 (11)	-0.0880 (5)	0.0490 (10)
C33	-0.6160 (12)	-0.0380 (5)	0.1631 (11)
C34	-0.4911 (10)	-0.0707 (5)	0.2300 (9)
C35	-0.3911 (11)	-0.1520 (5)	0.1845 (10)
C36	-0.4144 (11)	-0.2032 (5)	0.0707 (10)
C41	-0.7761 (10)	-0.2779 (5)	-0.0021 (9)
C42	-0.8532 (10)	-0.3298 (5)	-0.0685 (10)
C43	-1.0003 (11)	-0.3595 (5)	0.0309 (11)
C44	-1.0728 (11)	-0.3358 (5)	0.1948 (11)
C45	-0.9953 (12)	-0.2858 (6)	0.2589 (11)
C46	-0.8457 (11)	-0.2566 (5)	0.1612 (10)

Table VIII. Bond Distances in 6b (Å)

Re-C1	2.066 (7)	C22-C23	1.388 (11)
C1-C2	1.192 (11)	C23-C24	1.401 (13)
C2-C3	1.484 (12)	C24-C25	1.380 (13)
Re-N	1.758 (6)	C25-C26	1.391 (11)
N-0	1.212 (8)	P1-C31	1.837 (7)
Re-C11	2.313 (8)	C31-C32	1.373 (10)
Re-C12	2.319 (9)	C31-C36	1.394 (10)
Re-C13	2.299 (8)	C32-C33	1.398 (11)
Re-C14	2.293 (10)	C33-C34	1.377 (11)
Re-C15	2.300 (8)	C34-C35	1.363 (11)
C11-C12	1.383 (15)	C35-C36	1.407 (11)
C11-C15	1.413 (14)	P1-C41	1.836 (7)
C12-C13	1.404 (16)	C41-C46	1.385 (11)
C13-C14	1.378 (15)	C41-C42	1.398 (11)
C14-C15	1.415 (15)	C42-C43	1.396 (11)
Re-P1	2.362 (2)	C43-C44	1.395 (13)
P1-C21	1.835 (7)	C44-C45	1.367 (13)
C21-C26	1.399 (11)	C45-C46	1.400 (12)
C21-C22	1.403 (11)		

Table IX. Bond Angles in 6b (deg)

N-Re-P1	92.5 (2)	Re-P1-C31	115.1 (2)
C1-Re-P1	87.0 (2)	P1-C31-C32	119.3 (5)
C1-Re-N	97.7 (3)	P1-C31-C36	121.6 (6)
Re-C1-C2	175.8 (7)	C32-C31-C36	119.0 (7)
C1-C2-C3	176.8 (9)	C31-C32-C33	121.0 (7)
Re-N-O	175.0 (6)	C34-C33-C32	120.0 (7)
C1-Re-C14	88.0 (3)	C35-C34-C33	119.7 (7)
C12-C11-C15	108.0 (9)	C34-C35-C36	120.9 (7)
C11-C12-C13	108.0 (9)	C31-C36-C35	119.4 (7)
C14-C13-C12	109.0 (8)	Re-P1-C41	112.9 (2)
C13-C14-C15	107.6 (9)	P1-C41-C46	121.4 (6)
C11-C15-C14	107.4 (8)	P1-C41-C42	118.8 (6)
Re-P1-C21	117.6 (2)	C46-C41-C42	119.8 (7)
P1-C1-C26	117.6 (6)	C43-C42-C41	119.6 (7)
P1C21C22	122.7 (6)	C44-C43-C42	120.2 (8)
C26-C21-C22	119.7 (7)	C45-C44-C43	119.8 (8)
C23-C22-C21	119.9 (8)	C44-C45-C46	120.7 (8)
C22-C23-C24	119.6 (8)	C41-C46-C45	119.9 (8)
C25-C24-C23	120.7 (7)	C21-P1-C41	104.1 (4)
C24-C25-C26	120.0 (8)	C21-P1-C31	102.8 (3)
C25-C26-C21	120.0 (8)	C41-P1-C31	102.6 (3)

Figure 5. Schematic comparison of the stereochemistry of (a) electrophilic attack upon acetylide complexes **6b-d** (Schemes 11-111) with (b) that of interconverting propargyl and allenic systems.

nucleophilicity to charge distribution (eq 1). Also, the pK_b of $(\eta^5-C_5H_5)Fe(dppe)(C \equiv CCH_3)$ is ca. 6.26 (2:1 THF/H₂O),^{3a} which shows that acetylide complexes can be moderately strong bases.

The stereospecificity observed in the reactions of acetylide complexes **6b-d** with electrophiles is easily rationalized. First, note the four acetylide C_{β} p orbital lobes labeled a-d in Newman projection VII (Scheme II). Two of these (c, d) are orthogonal to the rhenium fragment HOMO (see III) and thus should be less reactive toward electrophiles. Of the remaining two (a, b)we had expected that a, which is anti to the bulky PPh₃ ligand, would be more reactive toward electrophiles. Schemes II and III clearly show this to be the case. However, the high stereoselectivity observed, $(98 \pm 2):(2 \pm 2)$ or greater, is to us surprising. Hence, the chiral rhenium substituent confers a high degree of reaction asymmetry upon a C=C triple bond.

Electrophilic attack upon the acetylide ligand generates a new C_{β} stereogenic⁴⁰ unit, as shown schematically in Figure 5a. This type of 1,3-asymmetric induction requires an acetylide substituent atom that can increase its valence number past four and is to our knowledge without precedent. There is a conceptual relationship to previously observed stereospecific interconversions of propargyl and allenic systems (Figure 5b).⁴¹ However, here one stereogenic unit is simply converted to another.⁴²

The stereospecific C_{α} addition of nucleophiles to vinylidene complexes ac- and sc-3bCF₃SO₃⁻ (Scheme IV) from a direction anti to the PPh₃ ligand has precedent in reactions of the corresponding alkylidene complexes.²² In contrast to the electrophile additions discussed above, there are two stereogenic units in both the reactants and products. Interestingly, Reger has previously reported the stereoselective addition of a methyl cuprate reagent to iron methyl phenyl vinylidene complex $[(\eta^5 - C_5H_5)Fe(CO)-(PPh_3)(=C=C(CH_3)(C_6H_5)]+CF_3SO_3^{-.12f}$ This compound is analogous to 7cFSO3⁻ and hence should exist predominantly as a sc Fe=C=C isomer (XII, Scheme III). Transition-state model XIII (Scheme IV) then predicts that the new C_{α} methyl group should be introduced cis to the C_{β} phenyl group to give an E C=C isomer. However, Reger reports the predominant (93:7) formation of the less stable Z isomer, with the C_{α} and C_{β} methyl groups *cis*. This is likely due to the facile interconversion of Fe=C=C isomers (see above), and a less hindered nucleophile C_{α} approach (syn to C_{β} methyl) in the less stable *ac* isomer. Related phenomena have recently been documented by Brookhart with C_{α} nucleophilic attack upon the corresponding iron alkylidene complexes.43

⁽⁴⁰⁾ Mislow, K.; Siegel, J. J. Am. Chem. Soc. 1984, 106, 3319.

⁽⁴¹⁾ See, inter alia: (a) Cinquini, M.; Colonna, S.; Cozzi, F.; Stirling, C. J. M. J. Chem. Soc., Perkin Trans. 1 1976, 2061. (b) Claesson, A.; Olsson, L.-E. J. Am. Chem. Soc. 1979, 101, 7302. (c) Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1984, 25, 3055.

⁽⁴²⁾ In other relevant work, the "recognition" of stereogenic units separated by a C==C triple bond has been probed by NMR: (a) Jones, A. J.; Stiles, P. J. Tetrahedron Lett. 1977, 18, 1965. Stiles, P. J. Tetrahedron 1977, 33, 2981.
(b) Reisse, J.; Ottinger, R.; Bickart, P.; Mislow, K. J. Am. Chem. Soc. 1978, 100, 911.

⁽⁴³⁾ Brookhart, M.; Liu, Y.; Buck, R. C. J. Am. Chem. Soc. 1988, 110, 2337.

Table X. Summary of Rate Constants and Equilibrium and Activation Parameters for Re=C=C lsomerization in Vinylidene Complexes $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(=C=CRR')^+X^-)]$

		А.	Rate Constants (k_1) for ac -	→ sc Re=C=C lsor	nerization ^a		
compound	temperat	ure (±0.2 °C)	$k_1 \times 10^4$, s ⁻¹	compou	nd temperat	ure (±0.2 °C)	$k_1 \times 10^4$, s ⁻¹
ac-3bCF ₃ SO ₃ ⁻		22.6	1.45 ± 0.08	ac-3dCF3	SO3-	17.8	3.00 ± 0.06
		25.2	1.79 ± 0.15			24.6	6.75 ± 0.09
		30.7	3.27 ± 0.13			31.2	14.7 ± 0.45
		36.8	7.62 ± 0.04			41.5	35.7 ± 1.0
$ac-3cCF_3SO_3^-$		21.9	7.45 ± 0.30	ac-7cFSO	3	27.1	1.28 ± 0.13^{b}
0 0		25.9	9.92 ± 0.02			35.2	2.90 ± 0.20
		34.2	23.8 ± 0.40			39.9	4.36 ± 0.20
		37.1	31.3 ± 1.0			45.0	7.36 ± 0.26
			B. Equilibrium and A	ctivation ^c Parameter	s		
	·	Keq	ΔG°	ΔH^*	ΔS^{*}	ΔG	;‡
read	ction	(21 °C)	(21 °C, kcal/mol)	(kcal/mol)	(eu)	(21 °C, k	cal/mol)
ac-3bCF	5 ₃ SO ₃ ⁻ ≓	1.0 ± 0.1	0.00 ± 0.05	20.8 ± 0.4	-5.7 ± 1.8	22.5 ±	= 0.9
sc-3b0	CF ₃ SO ₃ -						
ac-3cCF	'₃SO₃⁻ ≓	4.0 ± 0.4	-0.81 ± 0.07	16.9 ± 0.4	-15.5 ± 1.0	21.5 ±	: 0.6
sc-3c(CF ₃ SO ₃ -						
ac-3dCF	F₃SO₃ [−] ≓	4.0 ± 0.4	-0.81 ± 0.07	18.6 ± 0.3	-10.5 ± 1.5	21.7 ±	: 0.7
sc-3d(CF ₃ SO ₃ -						
ac-7cFS	0₃⁻ ≓	3.0 ± 0.4	-0.64 ± 0.07	17.6 ± 1.3^{b}	-17.7 ± 2.4^{b}	22.8 ±	= 2.0
sc-7cl	FSO ₃ -						

^a The forward rate constant, k_1 , was obtained by plotting log $([sc]_{equil} - [sc]_1)$ versus time. The variable k_{-1} was estimated from the slope, $-0.4343(k_1 + k_{-1})$, by substituting k_1/K : Capellos, C.; Bielski, B. H. J. *Kinetic Systems*; Wiley: New York, 1972; Chapter 8. ^b Recalculated from the raw data for ref 25. ^c For the forward reaction (k_1) .

5. Summary. This study establishes that chiral rhenium acetylide and vinylidene complexes $[(\eta^5 \cdot C_5H_5)Re(NO)(PPh_3)\cdot(X)]^{n+}$ exhibit a wealth of novel structural and chemical properties. In particular, the 1,3-asymmetric induction observed in C_β electrophilic attack upon acetylide complexes **6b-d** appears without precedent. This study also provides the first quantitative rate and equilibrium data for the interconversion of M=C and M=C=C isomers of corresponding alkylidene and vinylidene complexes. Finally, the scope of the $(\eta^5 \cdot C_5H_5)Re(NO)(PPh_3)$ moiety as a unique stereogenic transmitter has been further extended,⁴⁴ and additional applications of this capability are under active pursuit.

Experimental Section

General Methods. General procedures have been described in a recent paper.²⁴ Additional reagents employed were as follows: $(CF_3SO_2)_2O$ (Aldrich), distilled from P_2O_5 , freeze-pump-thaw degassed three times, distilled under vacuum, and stored at -20 °C in an inert atmosphere glovebox; CF_3SO_3H (Aldrich), distilled before use; HPF_6 ·Et₂O, HBF_4 ·Et₂O (Columbia), $(n-C_4H_9)_4N^+CF_3SO_3^-$ (Alfa), and $P(CH_3)_3$ (Strem), used as received; TMP (Aldrich),^{27d} distilled from CaH₂. UV/vis spectra were recorded on a Perkin-Elmer 552A spectrophotometer.

Preparation of $(\eta^5-C_5H_5)Re(NO)(PPh_3)(COCH_2(1-C_{10}H_7))$ (2d). A Schlenk flask was charged with $(\eta^5-C_5H_5)Re(NO)(PPh_3)(CO_2CH_3)$ $(0.720 \text{ g}, 1.19 \text{ mmol})^{26}$ and a stir bar and cooled to -78 °C. Then a -78 °C solution of $(1-C_{10}H_7)CH_2MgCl$ (freshly prepared from $(1-C_{10}H_7)C-$ H₂Cl (1.22 g, 6.94 mmol), toluene (30 mL), and a large excess of magnesium strips) in ether (20 mL) was slowly added via cannula with stirring. The reaction was stirred for 1 h at -78 °C and was then slowly warmed to room temperature. Solvent was removed by rotary evaporation, and the resulting yellow residue was extracted with acetone. The extract was filtered through a medium porosity fritted funnel, and solvent was removed from the filtrate by rotary evaporation. The residue was extracted with a minimum of CH_2Cl_2 , and the extract was deposited on a dry 5-cm column of silica gel. The column was eluted with 90:10 $\left(v/v\right)$ hexane/ethyl acetate, and the eluent was concentrated by rotary evaporation. A yellow powder precipitated, which was collected by filtration and washed with cold ether $(2 \times 10 \text{ mL})$ to give 2d (0.519 g, 0.728 mmol). The washings were concentrated and stored at -20 °C overnight to give a second crop (0.124 g, 0.174 mmol, 76% total yield) of 2d. The

crops were combined and recrystallized from ether to give golden prisms of **2d** (0.434 g, 0.609 mmol, 51%), mp 195 °C dec: 1R (cm⁻¹, thin film) $\nu_{N=0}$ 1640 s, $\nu_{C=0}$ 1543 s; ¹H NMR (δ , CDCl₃) 7.93-7.00 (m, 3C₆H₅, C₁₀H₇), 5.02 (s, C₅H₅), 4.71 (d, ²J_{HH} = 14.5 Hz, CHH'), 3.52 (d, ²J_{HH} = 14.5 Hz, CHH'); ¹³C[¹H] NMR (ppm, CDCl₃) 249.3 (d, J_{CP} = 9.0 Hz, C=O), PPh₃ at 135.4 (d, J_{CP} = 55.1 Hz, *i*), 133.3 (d, J_{CP} = 10.5 Hz, *o*), 130.1 (s, *p*), 128.2 (d, J_{CP} = 10.7 Hz, *m*), C₁₀H₇ at (s, one resonance obscured) 135.1, 132.4, 127.9, 127.7, 125.8, 125.5, 125.1, 124.9, 124.7, 92.2 (s, C₅H₅), 66.8 (s, CH₂); ³¹P[¹H] NMR (ppm, CDCl₃) 16.2 (s); mass spectrum ((+)-FAB (7 kV, Ar, 3-nitrobenzyl alcohol), *m/z* (rel intensity), ¹⁸⁷Re) 714 (M⁺, 2), 572 (M⁺ - CH₂C₁₀H₇, 100), 544 (M⁺ - COCH₂C₁₀H₇, 25). Anal. Calcd for C₃₅H₂₉NO₂PRe: C, 58.98; H, 4.10. Found: C, 58.76; H, 4.14.

Preparation of $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(=C=CH_2)]^+CF_3SO_3^-$ (3aCF_3SO_3^-). A Schlenk flask was charged with $(\eta^5-C_5H_5)Re(NO)$ -(PPh_3)(COCH_3) (2a, 0.600 g, 1.02 mmol; crystalline material recommended),²⁶ CH₂Cl₂ (50 mL), and a stir bar (note: rigorous inert atmosphere techniques are essential throughout this procedure). The solution was cooled to -78 °C, and (CF_3SO_2)_2O (87.0 μ L, 0.518 mmol) was added with stirring. After 10 min, TMP^{27d} (172 μ L, 1.02 mmol) was added. Stirring was continued for an additional hour at -78 °C, and then (CF_3SO_2)_2O (87.0 μ L, 0.518 mmol) was added. After 10 min, the solution was warmed to room temperature and filtered through a medium porosity fritted funnel. Solvent was removed from the filtrate by rotary evaporation, and the resulting orange solid was extracted with CHCl₃. The extract was filtered, and solvent was removed from the filtrate by rotary evaporation. This gave 3aCF_3SO_3^- (0.650 g, 0.904 mmol, 88%) as a burnt orange foam, mp 191–194 °C dec: mass spectrum ((+)-FAB (7 kV, Ar, 3-nitrobenzyl alcohol), m/z (rel intensity), ¹⁸⁷Re) 570 (M⁺, 100), 544 (M⁺ - C₂H₂, 23), 467 (M⁺ - C₂H₂-C₆H₅, 5), 262 (Ph₃P⁺, 8). **Preparation of** [(η^2 -C₃H₃)Re(NO) (PPh_3)(=C==CHCH₃)]⁺CF₃SO₃⁻

(3bCF₃SO₃⁻), A Schlenk flask was charged with $(\eta^5-C_5H_5)Re(NO)$ -(PPh₃)(COCH₂CH₃) (**2b**, 0.306 g, 0.510 mmol),²⁶ CH₂Cl₂ (80 mL), and a stir bar. The solution was cooled to -78 °C, and $(CF_3SO_2)_2O$ (42.9 μ L, 0.255 mmol) was added with stirring. After 10 min, TMP (86.1 μ L, 0.510 mmol) was added. The reaction was allowed to warm to 0 °C and then cooled to -78 °C. Then $(CF_3SO_2)_2O$ (42.9 μ L, 0.255 mmol) was added. After 10 min, the solution was warmed to room temperature and filtered through a medium porosity fritted funnel. Solvent was removed from the filtrate by rotary evaporation to give crude $3bCF_3SO_3^-$ (0.337 g, 0.460 mmol, 90%) as a light brown powder. The powder was dissolved in CH₂Cl₂, and the resulting solution was layered with ether. Honey yellow needles of 3bCF₃SO₃⁻ formed, which were collected by filtration and dried in vacuo (0.292 g, 0.398 mmol, 78%), mp 152-155 °C dec. This material was a (95 ± 2) : (5 ± 2) mixture of sc/ac isomers, as assayed by low-temperature ¹H NMR: mass spectrum ((+)-FAB (7 kV, Ar, 3-nitrobenzyl alcohol), m/z (rel intensity), 187 Re) 584 (M⁺, 100), 544 (M⁺ - C₂HCH₃, 60), 467 (M⁺ - C₂HCH₃-C₆H₅, 4), 262 (Ph₃P⁺, 6); UV (nm (ϵ), 3.36 × 10⁻⁵ M in CH₂Cl₂) 256 sh (9100), 267 sh (7500), 272 sh (6000), 280 sh (4100), 312 sh (2200). Anal. Calcd for

⁽⁴⁴⁾ See, for example: (a) Crocco, G. L.; Gladysz, J. A. J. Am. Chem. Soc. 1985, 107, 4103. (b) Heah, P. C.; Patton, A. T.; Gladysz, J. A. Ibid. 1986, 108, 1185. (c) Fernández, J. M.; Emerson, K.; Larsen, R. D.; Gladysz, J. A. Ibid. 1986, 108, 8268. (d) Zwick, B. D.; Arif, A. M.; Patton, A. T.; Gladysz, J. A. Angew. Chem., Int. Ed. Engl. 1987, 26, 910. (e) Fernández, J. M.; Emerson, K.; Larsen, R. D.; Gladysz, J. A. J. Chem. Soc., Chem. Commun. 1988, 37.

 $C_{27}H_{24}F_3NO_4PSRe:$ C, 44.25; H, 3.27; N, 1.91; P, 4.23. Found: C, 44.72; H, 3.42; N, 1.88; P, 4.27.

Preparation of sc- $[(\eta^5-C_5H_5)$ Re(NO)(PPh₃)(=C=CHC₆H₅)]⁺-CF₃SO₃⁻ (sc-3cCF₃SO₃⁻). This compound was prepared by a procedure identical with that given for 3bCF₃SO₃⁻, utilizing the following materials and quantities: $(\eta^5-C_5H_5)$ Re(NO)(PPh₃)(COCH₂C₆H₅) (2c, 0.389 g, 0.588 mmol),²⁶ CH₂Cl₂ (100 mL), (CF₃SO₂)₂O (49.5 μ L, 0.294 mmol), TMP (99.2 μ L, 0.588 mmol), (CF₃SO₂)₂O (49.5 μ L, 0.294 mmol). Crude 3cCF₃SO₃⁻ was obtained as a golden powder (0.390 g, 0.491 mmol, 84%) which was recrystallized from layered CH₂Cl₂/ether. This gave golden needles of 3cCF₃SO₃⁻ (0.303 g, 0.382 mmol, 65%), mp 205-208 °C dec. This material was a >99:1 mixture of sc/ac isomers, as assayed by low-temperature ¹H NMR: mass spectrum ((+)-FAB (7 kV, Ar, 3-nitrobenzyl alcohol), m/z (rel intensity), ¹⁸⁷Re) 646 (M⁺, 100), 544 (M⁺ - C₂HC₆H₅, 63). Anal. Calcd for C₃₂H₂₆F₃NO₄PSRe: C, 48.35; H, 3.27; N, 1.76; P, 3.90. Found: C, 48.03; H, 3.40; N, 1.75; P, 3.98.

Preparation of sc-[(η^5 -C₅H₃)Re(NO)(PPh₃)(=C=CH(1-C₁₀H₇))]⁺-CF₃SO₃⁻ (sc-3dCF₃SO₃⁻). This compound was prepared by a procedure identical with that given for 3bCF₃SO₃⁻, utilizing the following materials and quantities: 2d (0.179 g, 0.252 mmol), CH₂Cl₂ (50 mL), (CF₃SO₂)₂O (21.5 μ L, 0.128 mmol), TMP (42.5 μ L, 0.252 mmol), (CF₃SO₂)₂O (21.5 μ L, 0.128 mmol). Crude 3dCF₃SO₃⁻ was obtained as a dark yellow residue that was extracted with a minimum of CH₂Cl₂. Then ether (20 mL) and hexanes (20 mL) were added to the extract. Solvent was removed by rotary evaporation to give 3dCF₃SO₃⁻ as a honey brown powder (0.203 g, 0.240 mmol, 95%), which was crystallized from layered CH₂Cl₂/hexanes. This gave small yellow prisms of sc-3dCF₃SO₃⁻ (0.135 g, 0.160 mmol, 63%), mp 218-220 °C dec. This material was a >99:1 mixture of sc/ac isomers, as assayed by low-temperature ¹H NMR: mass spectrum ((+)-FAB (7 kV, Ar, 3-nitrobenzyl alcohol), m/z (rel intensity), ¹⁸⁷Re) 696 (M⁺, 71), 572 (M⁺ - C₂HC₁₀H₇ + CO, 29), 544 (M⁺ - C₃HC₁₀H₇, 100); UV (nm (ε) 2.04 × 10⁻⁵ M in CH₂Cl₂) 260 (33000), 275 sh (27000), 300 sh (16000), 367 (7600). Anal. Calcd for C₃₆H₂₈F₃NO₄PSRe: C, 51.18; H, 3.34. Found: C, 50.92; H, 3.40.

Preparation of $(\eta^5$ -C₅H₅)Re(NO)(PPh₃)(C=CH) (6a). A Schlenk flask was charged with $3aCF_3SO_3^-$ (0.173 g, 0.241 mmol), CH_2Cl_2 (25 mL), and a stir bar. The solution was cooled to -78 °C, and TMP^{27d} (41.0 μ L, 0.243 mmol) was added with stirring. After 10 min, the mixture was warmed to room temperature and filtered. Solvent was removed from the filtrate by rotary evaporation. The resulting red residue was extracted with THF, and the extract was filtered through a 5-cm plug of silica gel that had been base washed, CH2Cl2 washed, and oven-dried. Solvent was removed from the filtrate by rotary evaporation, and the residue was extracted with a minimum of CH2Cl2. Hexanes were added to slightly past a cloud point, and the mixture was filtered through 3 cm of Celite on a medium porosity fritted funnel. The Celite was washed with ether $(3 \times 5 \text{ mL})$, and the washings were combined with the filtrate. Solvents were removed by rotary evaporation to give 6a (0.0726 g, 0.128 mmol, 53%) as an orange powder, mp 211–214 °C dec: mass spectrum (m/z (rel intensity), 17 eV, ¹⁸⁷Re) 569 (M⁺, 63), 544 (M⁺ C_2H , 10), 467 (M⁺ - C_2H - C_6H_5 , 3), 262 (Ph₃P⁺, 100). Anal. Calcd for C₂₅H₂₁NOPRe: C, 52.81; H, 3.72. Found: C, 53.12; H, 3.49.

Preparation of $(\eta^5-C_5H_5)$ **Re(NO)** (**PPh**₃)($C = CCH_3$) (**6b**). A Schlenk flask was charged with 3bCF₃SO₃⁻ (0.200 g, 0.273 mmol), CH₂Cl₂ (50 mL), and a stir bar. The solution was cooled to -78 °C, and TMP (46.0 μ L, 0.273 mmol) was added with stirring. The reaction was allowed to warm to room temperature, and solvent was then removed under oil pump vacuum. This gave crude 6b as an orange solid (0.140 g, 0.240 mmol, 88%). The solid was dissolved in CH₂Cl₂, and the solution was layered with hexane. This gave red prisms of 6b, which were collected by filtration and dried in vacuo (0.130 g, 0.223 mmol, 82%), mp 154–158 °C dec: mass spectrum (m/z (rel intensity), 16 eV, ¹⁸⁷Re) 583 (M⁺, 100), 467 (M⁺ - C₂CH₃-C₆H₅, 13), 262 (Ph₃P⁺, 40). Anal. Calcd for C₂₆H₂₃NOPRe: C, 53.59; H, 3.95; N, 2.40; P, 5.32. Found: C, 53.43; H, 3.89; N, 2.37; P, 5.30.

Preparation of $(\eta^5-C_5H_5)$ **Re**(NO) (**PPh**₃)($C \equiv CC_6H_5$) (6c). This compound was prepared by a procedure identical with that given for 6b, utilizing $3cCF_3SO_3^-$ (0.200 g, 0.252 mmol) and TMP (42.0 μ L, 0.250 mmol). Crude 6c was obtained as an orange powder (0.150 g, 0.233 mmol, 92%), which was recrystallized from layered CH₂Cl₂/ether. This gave orange needles of 6c, which were collected by filtration and dride in vacuo (0.121 g, 0.188 mmol, 75%), mp 205-208 °C: mass spectrum (m/z (rel intensity), 16 eV, ¹⁸⁷Re) 645 (M⁺, 92), 544 (M⁺ - C₂C₆H₅, 15), 467 (M⁺ - C₂C₆H₅, C₆H₅, 10), 262 (Ph₃P⁺, 100). Anal. Calcd for C₃₁H₂₅NOPRe: C, 57.74; H, 3.88; N, 2.17; P, 4.81. Found: C, 57.08; H, 4.06; N, 2.24; P, 4.61.

Preparation of $(\mu^5-C_5H_5)$ Re(NO)(PPh₃)(C=C(1-C₁₀H₇)) (6d). A Schlenk flask was charged with 3dCF₃SO₃⁻ (0.245 g, 0.290 mmol), CH₂Cl₂ (30 mL), and a stir bar. The solution was cooled to -78 °C, and TMP (49.0 μ L, 2.90 mmol) was added with stirring. After 5 min, the mixture was warmed to room temperature and then filtered through a medium porosity fritted funnel. Solvent was removed from the filtrate by rotary evaporation. The resulting red powder was extracted with CH₂Cl₂, and the extract was filtered through a 5-cm plug of silica gel that had been washed with 90:10 (v/v) hexanes/NEt₃, CH₂Cl₂, and dried. Hexanes were added to the filtrate, and solvent was removed by rotary evaporation. This gave **6d** as an orange foam (0.167 g, 0.241 mmol, 83%). The foam was dissolved in CH₂Cl₂, and the solution was layered with hexane. This gave orange needles of **6d** that were collected by filtration and dried in vacuo (0.144 g, 0.208 mmol, 72%), mp 209 °C dec: mass spectrum (*m*/*z* (rel intensity), 17 eV, ¹⁸⁷Re) 695 (M⁺, 100%), 262 (Ph₃P⁺, 13); UV (nm (ϵ), 2.58 × 10⁻⁵ M in CH₂Cl₂) 260 (23000), 284 sh (16000), 320 (16000), 360 sh (7900) 398 sh (2300). Anal. Calcd for C₃₅H₂₇NOPRe: C, 60.50; H, 3.92. Found: C, 60.23; H, 4.03.

Reactions of Acetylide Complexes with CF₃SO₃H. In a typical experiment, a 5-mm NMR tube was charged with **6b-d** (0.0465 mmol) and CD₂Cl₂ (0.600 mL) and capped with a septum. The solution was freeze-pump-thaw degassed three times, and a nitrogen atmosphere was admitted. The tube was cooled to -196 °C, and CF₃SO₃H (4.50 μ L, 0.0508 mmol) was added via syringe. The mixture was thawed in a -78 °C bath, shaken, and quickly transferred to a -80 °C NMR probe. Immediate analysis by ¹H NMR gave the *ac/sc* ratios given in the Results section.

Preparation of sc-3dPF₆⁻. A Schlenk flask was charged with **6d** (0.0147 g, 0.0212 mmol), CH₂Cl₂ (15 mL), and a stir bar. The solution was cooled to -78 °C, and then HPF₆·Et₂O (0.0047 g, 0.021 mmol) was added with stirring. After 5 min, the mixture was warmed to room temperature, and solvent was removed under oil pump vacuum. The resulting yellow residue was extracted with CH₂Cl₂, and the extract was layered with hexanes. This gave yellow prisms of *sc*-**3d** PF₆⁻, which were collected by filtration and dried in vacuo (0.0119 g, 0.0142 mmol, 67%), mp 224 °C dec. The IR and NMR (¹H, ¹³C, ³¹P) spectra, and low-temperature isomer purity assay, of *sc*-**3d**PF₆⁻ matched those of *sc*-**3d**CF₃SO₃⁻. Anal. Calcd for C₃₅H₂₈F₆NOP₂Re: C, 50.00; H, 3.36. Found: C, 49.61; H, 3.49.

Preparation of $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(=C=C(CH_3)_2)]^+FSO_3^-$ (7b FSO_3⁻). A Schlenk flask was charged with **6b** (0.200 g, 0.343 mmol), CH₂Cl₂ (50 mL), and a stir bar. The solution was cooled to 0 °C, and CH₃SO₃F (47.0 μ L, 0.547 mmol) was added with stirring. The mixture was allowed to warm to room temperature over the course of 45 min, then solvent was removed under reduced pressure, and the residue was washed with toluene until the washings were colorless. The remaining golden solid was dissolved in CH₂Cl₂ (20 mL), and the solution was layered with ether. Light brown needles of **7b**FSO₃⁻ formed over the course of 2 days and were collected by filtration and dried in vacuo (0.190 g, 0.273 mmol, 80%). Anal. Calcd for C₂₇H₂₆FNO₄PSRe: C, 46.54; H, 3.73; N, 2.01; P, 4.45. Found: C, 45.86; H, 3.82; N, 1.98; P, 4.40.

Preparation of [(η⁵-C₃H₅)**Re**(**NO**)(**PPh**₃)(=**C**=**C**(**C**H₃)(C₆H₅))]⁺**FSO**₃⁻ (**7c FSO**₃⁻). This compound was prepared by a procedure identical with that given for **7b**FSO₃⁻, utilizing **6c** (0.250 g, 0.388 mmol), CH₃S-O₃F (50.0 μL, 0.582 mmol), and CH₂Cl₂ (50 mL). The solid remaining after the toluene wash was recrystallized from layered CH₂Cl₂/ether. Brown needles of **7c**FSO₃⁻ formed, which were collected by filtration and dried in vacuo (0.200 g, 0.264 mmol, 68%): IR (cm⁻¹, CHCl₃) ν_{N=O} 1750 s, ν_{C=C} 1652 m; a ¹H NMR spectrum (room temperature) indicated an ca. 75:25 sc-**7c**FSO₃⁻/ac-**7c**FSO₃⁻ ratio (δ, CDCl₃) ac 7.78-7.08 (m, 3C₆H₅), 7.08-6.10 (m, 1C₆H₅), 6.09 (s, C₅H₅), 2.33 (s, CH₃), sc 7.78-7.08 (m, 4C₆H₅), 6.06 (s, C₅H₅), 1.58 (s, CH₃); ¹³Cl¹H} NMR (ppm, CDCl₃) ac 334.2 (d, J_{CP} = 10.0 Hz, C_α), 141.2 (s, C_β), 132.9-128.1 (PC₆H₅ and CC₆H₅), 98.5 (s, C₅H₅), 16.8 (s, CH₃), sc 330.9 (weak m, C_α), 140.0 (s, C_β), 133.1-125.9 (m, PC₆H₅ and CC₆H₅), 98.9 (s, C₅H₅), 10.6 (s, CH₃); mass spectrum ((+)-FAB (7 kV, Ar, 3-nitrobenzyl alcohol), m/z (rel intensity), ¹⁸TRe) 660 (M⁺, 100), 544 (M⁺ - C₂(CH₃)C₆H₅, 33), 467 (544 - C₆H₅, 7), 262 (Ph₃P⁺, 5).

Preparation of [(η⁵-C₅H₃)**Re**(**NO**)(**PPh**₃)(C(**P**(CH₃)₃)=**C**(CH₃)₂)]⁺-CF₃SO₃⁻ (**8**CF₃SO₃⁻). A Schlenk flask was charged with **6b** (0.0404 g, 0.0693 mmol), CH₂Cl₂ (20 mL), and a stir bar. The solution was cooled to 0 °C, and CF₃SO₃CH₃ (9.40 μL, 0.829 mmol) was added with stirring. The mixture was warmed to room temperature over 45 min, and solvents were removed by rotary evaporation. The resulting brown residue was then extracted with CH₂Cl₂ (20 mL). A 50-mL Schlenk flask was charged with this extract and a stir bar. The mixture was cooled to 0 °C, and P(CH₃)₃ (10.0 μL, 0.0983 mmol) was added with stirring. After 45 min, solvents were removed under oil pump vaccum. This gave an orange residue that was extracted with CH₂Cl₂. The extract was layered with ether. This gave orange needles of **8**CF₃SO₃⁻, which were collected by filtration and dried in vacuo (0.0345 g, 0.0419 mmol, 60%), mp 211 °C: 1R (cm⁻¹, thin film) ν_{N=EO} 1649 s; ¹H NMR (δ, CDCl₃) 7.50-7.25 (m, 3C₆H₅), 5.44 (s, C₅H₅), 2.14 (d, J_{HP} = 1.7 Hz, Z-CH₃); ¹³C[¹H] NMR

Rhenium Acetylide and Vinylidene Complexes

(ppm, CDCl₃) 161.5 (d, $J_{CP} = 6.1$ Hz, C_{β}), 103.4 (dd, ${}^{1}J_{CP} = 16.6$ Hz, ${}^{2}J_{CP} = 7.6$ Hz, C_{α}), PPh₃ at 134.4 (d, $J_{CP} = 52.1$ Hz, *i*), 133.1 (d, $J_{CP} = 8.6$ Hz, *o*), 130.4 (s, *p*), 128.3 (d, $J_{CP} = 8.5$ Hz, *m*), 120.4 (q, $J_{CF} = 319.4$ Hz, CF₃), 92.1 (s, $C_{5}H_{5}$), 37.4 (dd, ${}^{3}J_{CP} = 27.1$ Hz, ${}^{4}J_{CP} = 2.8$ Hz, Z-CH₃), 27.1 (d, $J_{CP} = 16.1$ Hz, E-CH₃), 16.6 (d, $J_{CP} = 53.1$ Hz, PCH₃); ${}^{31}P[{}^{11}H\}$ NMR (ppm, CDCl₃) 23.0 (s, PCH₃), 7.5 (s, PPh); mass spectrum ((+)-FAB (7 kV, Ar, 3-nitrobenzyl alcohol), m/z (rel intensity), ¹⁸⁷Re) 674 (M⁺, 37), 598 (M⁺ – P(CH₃)₃, 100), 544 (M⁺ – C(P-(CH₃)₃)C(CH₃)₂, 23), 412 (M⁺ – PPh₃, 37). Anal. Calcd for C₃₁H₃₅F₃NO₄P₂SRe: C, 45.25; H, 4.29. Found: C, 45.11; H, 4.31.

Preparation of $(Z) \cdot [(\eta^5 \cdot C_5 H_5) \text{Re}(\text{NO})(\text{PPh}_3)(C(\text{P}(\text{CH}_3)_3) =$ $(Z)^{+}(CF_3SO_3^{-})$ (Z)-9CF₃SO₃). Complex *ac*-3bCF₃SO₃ was prepared in a septum-capped NMR tube at -78 °C as described above utilizing 6b (0.0250 g, 0.0429 mmol), CF₃SO₃H (3.80 µL, 0.0429 mmol), and CD₂Cl₂ (0.600 mL). Then P(CH₃)₃ (55.0 µL, 0.540 mmol) was added, and the sample was quickly transferred to a -80 °C NMR probe (data: text). The sample was kept at room temperature for a day and was then transferred to a flask where solvent was removed by oil pump vacuum. The resulting red residue was extracted with CH_2Cl_2 . The extract was layered with ether. This gave red flowers of (Z)-9 CF_3SO_3 -, which were collected by filtration and dried in vacuo (0.0198 g, 0.0245 which were collected by intration and dried in vacuo (0.0198, 0.024) mmol, 57%) dec point 222 °C: 1R (cm⁻¹, thin film) $\nu_{N=0}$ 1649 s; ¹H NMR (δ , CDCl₃) 7.50–7.26 (m, 3C₆H₅), 6.93 (dq, ³J_{HP} = 36.3 Hz, ³J_{HH} = 6.4 Hz, ==CH), 5.48 (s, C₅H₅), 1.49 (d, J_{HP} = 12.5 Hz, 3PCH₃), 1.40 (dd, ³J_{HH} = 6.3 Hz, ⁴J_{HP} = 3.0 Hz, CCH₃); ¹³Cl¹H} NMR (ppm, CDCl₃) 151.4 (d, J_{CP} = 3.8 Hz, C₈), 115.1 (dd, ¹J_{CP} = 22.2 Hz, ²J_{CP} = 8.0 Hz, C) PB oct 125 (dz, J = 52.6 Hz, (dz, J = 52.6 Hz, (dz, J = 10.5 Hz, (dz, J = 10.5 Hz, (dz, J = 10.5 Hz, (dz, J = 52.6 Hz, (dz, J = 10.5 Hz, (dz, C_{α}), PPh₃ at 135.1 (d, $J_{CP} = 52.6$ Hz, *i*), 133.2 (d, $J_{CP} = 10.1$ Hz, *o*), 130.6 (s, *p*), 128.4 (d, $J_{CP} = 10.1$ Hz, *m*), 92.0 (s, $C_{5}H_{5}$), 24.4 (d, J_{CP} $\begin{array}{l} \text{From } 120.5 \text{ (s, } p), \ 120.4 \text{ (u, } y_{CP} = 10.1 \text{ Hz}, \ m), \ 92.0 \text{ (s, } C_{5}113), \ 24.4 \text{ (u, } y_{CP} \\ = 29.7 \text{ Hz}, \text{CCH}_3), \ 12.2 \text{ (d, } J_{CP} = 55.5 \text{ Hz}, \text{PCH}_3); \ ^{31}\text{P}^{1}\text{H} \text{NMR} (\text{ppm}, \\ \text{CDC}_3) \ 30.5 \text{ (s, PCH}_3), \ 5.8 \text{ (s, PPh); mass spectrum ((+)-FAB (7 kV, \\ \text{Ar}, 3\text{-nitrobenzyl alcohol}), \ m/z \text{ (rel intensity)}, \ ^{187}\text{Re}) \ 660 \text{ (M}^+, \ 100), \ 584 \text{ (M}^+ - \text{P(CH}_3)_3, \text{99)}, \ 544 \text{ (M}^+ - \text{C(P(CH}_3)_3)\text{CHCH}_3, \ 53), \ 467 \text{ (544} \\ \text{CH} + \text{CH}$ C_6H_5 , 11), 398 (M⁺ – PPh₃, 30). Anal. Calcd for $C_{30}H_{33}F_3NO_4P_2SRe$:

C, 44.55; H, 4.11. Found: C, 44.38; H, 4.15. Preparation of (E)-[$(\eta^5-C_5H_5)$ Re(NO)(PPh₃)(C(P(CH₃)₃)= CHCH₃)]⁺CF₃SO₃⁻ ((E)-9CF₃SO₃⁻). A 5-mm septum-capped NMR tube was charged with crystalline 3bCF₃SO₃⁻ (0.0314 g, 0.0429 mmol, (95 ± 2) : $(5 \pm 2) sc/ac$ mixture) and cooled to -78 °C. Then CD₂Cl₂ (0.600 mL, -78 °C) was added. The tube was shaken, P(CH₃)₃ (55.0 μ L, 0.540 mmol) was added, and the mixture was quickly transferred to an -80 °C NMR probe (data: text). The sample was kept at room temperature for a day and was then transferred to a flask where solvent was removed by oil pump vacuum. The resulting red residue was extracted with ether and filtered. An equal volume of hexanes were added, and the solution was again filtered. Solvent was removed from the filtrate by rotary evaporation to give (E)-9CF₃SO₃⁻ as an orange powder, which was dried in vacuo (0.0278 g, 0.0344 mmol, 80%), mp 185 °C: 1R (cm⁻¹, was dried in vacuo (0.0278 g, 0.0344 mmol, 80%), mp 185 °C: 1R (cm ³, thin film) $\nu_{N=0}$ 1649 s; ¹H NMR (δ, CDCl₃) 7.48−7.27 (m, 3C₆H₅), 6.13 (dq, ³J_{HP} = 60.7 Hz, ³J_{HH} = 7.3 Hz, ==CH), 5.27 (s, C₅H₅), 1.89 (d, J_{HP} = 12.6 Hz, 3PCH₃), 1.75 (dd, ³J_{HH} = 7.3 Hz, ⁴J_{HP} = 3.3 Hz, CCH₃); 1³C{¹H} NMR (ppm, CDCl₃) 159.8 (dd, ²J_{CP} = 6.8 Hz, ³J_{CP} = 3.8 Hz, C_β), 108.3 (dd, ¹J_{CP} = 16.7 Hz, ²J_{CP} = 7.5 Hz, C_α), PPh₃ at 133.6 (d, J_{CP} = 53.3 Hz, i), 133.6 (d, J_{CP} = 10.1 Hz, o), 130.9 (s, p), 128.7 (d, L = 10.3 Hz, m) 120.6 (c, L = 320.2 Hz, CE) 10.0 (c) (c) (c) 22.7 $J_{CP} = 53.3 \text{ Hz}, 11, 133.6 (d, <math>J_{CP} = 10.1 \text{ Hz}, 0), 130.9 (s, p), 128.7 (d, <math>J_{CP} = 10.3 \text{ Hz}, m), 120.6 (q, <math>J_{CP} = 320.2 \text{ Hz}, CF_3), 91.0 (s, C_5H_5), 22.7 (d, <math>J_{CP} = 16.4 \text{ Hz}, CCH_3), 14.9 (d, <math>J_{CP} = 53.4 \text{ Hz}, PCH_3); {}^{31}P[{}^{1}H] \text{ NMR}$ (ppm, CDCl₃) 26.5 (s, PCH₃), 17.7 (s, PPh); mass spectrum ((+)-FAB (7 kV, Ar, 3-nitrobenzyl alcohol), m/z (rel intensity), 187 Re) 660 (M⁺, 49), 584 (M⁺ - P(CH_3)_3, 100), 544 (M⁺ - C(P(CH_3)_3)CHCH_3, 60), 467 (544 - C_6H_5, 22), 398 (M⁺ - PPh_3, 30).

Photolysis Experiments. In a typical experiment, a septum-capped NMR tube was charged with 3cCF₃SO₃⁻ or 3dCF₃SO₃⁻ (0.0400 mmol) and CD_2Cl_2 (0.600 mL). The resulting solution was freeze-pump-thaw degassed three times, and an N2 atmosphere was admitted. The tube was placed in a large Pyrex test tube that are partially filled with acetone. The test tube was in turn placed in a large unsilvered Pyrex Dewar charged with a dry ice/acetone bath. A Hanovia 450-W lamp was suspended in a water-cooled quartz immersion well placed adjacent to the Dewar. The sample was irradiated for 3 h at -78 °C and then quickly transferred to an -80 °C NMR probe. Analysis by ¹H NMR indicated a (50 ± 2) : (50 ± 2) photostationary state of sc/ac Re=C=C isomers. The sample was allowed to return to thermodynamic equilibrium (dark, room temperature), and additional irradiation cycles were conducted without noticeable decomposition.

Rate Experiments. A septum-capped NMR tube was charged with 6b-d (0.0300 mmol) and CD₂Cl₂. The resulting solution was freezepump-thaw degassed three times, and an N2 atmosphere was admitted. Then $ac-3b-dCF_3SO_3^-$ were generated as above, and the tube was quickly transferred to an NMR probe that had been preequilibrated to the appropriate temperature. The disappearance of ac-3b-dCF₃SO₃⁻ and appearance of $sc-3b-dCF_3SO_3^-$ were monitored by integration of the following ¹H NMR resonances: *ac*-3bCF₃SO₃⁻ and *sc*-3bCF₃SO₃⁻, CH₃; *sc*-3c-dCF₃SO₃⁻, =C=CH; *ac*-3c-dCF₃SO₃⁻, the upfield aromatic pro-ton. Calculation of k_1 : see Table X. All ΔH^* and ΔS^* were calculated from $\ln(k_1/T)$ versus 1/T plots. Other rate experiments were conducted similarly.

X-ray Crystal Structure of sc-3dPF₆. A large yellow crystal of sc- $3dPF_6^-$ (see above) was cleaved to give a fragment suitable for X-ray crystallography. The fragment was mounted on a glass fiber with epoxy cement and then coated with epoxy cement. Data were collected as summarized in Table 11. Lattice parameters were determined for 15 centered reflections with 2θ between 16° and 24°

The unit cell was monoclinic, and the pattern of systematic absence was consistent with either centric space group C2/c (no. 15) or acentric space group Cc (no. 9). Statistics indicated a centric structure, so space group C2/c was used in subsequent analysis.

The structure was solved by standard heavy atom techniques with the UCLA crystallographic package of programs.⁴⁵ The position of the rhenium was computed from a Patterson map. After a cycle of leastsquares refinement, an electron density difference map was computed. This gave the positions of all non-hydrogen atoms. Absorption corrections (ψ scan technique; ψ scan reflections 111, 333, 555, max/min intensity 1.29) were applied. After several cycles of refinement, the hydrogen atom positions were computed (C-H distance 1.0 Å), and isotropic thermal parameters were assigned to the individual hydrogens that were approximately equal to the isotropic thermal parameter of the carbon to which they were bond. All non-hydrogen atoms were then refined with anisotropic thermal parameters.

X-ray Crystal Structure of 6b. X-ray data were collected on red prisms of 6b (see above) as summarized in Table 11, employing techniques that have been previously described.⁴⁶ Lattice parameters (Table 1) were determined analogously to the previous structure. The position of the rhenium was located from a three-dimensional Patterson map. Full-matrix least-squares refinement yielded all non-hydrogen atoms.⁴⁵ Absorption corrections were applied, and all non-hydrogen atoms were refined with anisotropic temperature factors, except for C(14), which had a negative temperature factor when refined anisotropically. Phenyl and methyl hydrogens were located from a difference Fourier map. The cyclopentadienyl hydrogen positions were computed as above.

Acknowledgment, We thank the Department of Energy and NIH for support of this research.

Registry No. 2a, 82582-46-5; 2b, 82582-47-6; 2c, 82582-48-7; 2d, 115365-02-1; 3a $\rm CF_3SO_3^-, 82582-34-1; \ sc-3b \ CF_3SO_3^-, 82637-17-0; \ ac-$ **3b** CF₃SO₃⁻, 82582-36-3; sc-**3c** CF₃SO₃⁻, 82659-75-4; ac-**3c** CF₃SO₃⁻. 82582-38-5; sc-3d CF₃SO₃⁻, 115365-04-3; sc-3d PF₆⁻, 115405-78-2; ac-3d $CF_{3}SO_{3}^{-}, 115405\text{-}77\text{-}1; \textbf{ 6a}, 82582\text{-}43\text{-}2; \textbf{ 6b}, 82582\text{-}44\text{-}3; \textbf{ 6c}, 82582\text{-}45\text{-}4;$ **6d**, 115365-05-4; **7b** FSO₃⁻, 82598-62-7; *sc*-**7c** FSO₃⁻, 82637-19-2; *ac*-**7c** FSO₃⁻, 82582-42-1; **8** CF₃SO₃⁻, 115365-07-6; (*Z*)-**9** CF₃SO₃⁻, 115365-09-8; (E)-9 CF₃SO₃, 115405-80-6; $(\eta^{5}$ -C₅H₅)Re(NO)(PPh₃)(CO₂CH₃), 82293-79-6; (1-C₁₀H₇)CH₂MgCl, 37846-72-3.

Supplementary Material Available: Tables of hydrogen atom coordinates and isotropic and anisotropic temperature factors for $3dPF_6^-$ and 6b (4 pages); tables of observed and calculated structure factors (36 pages). Ordering information is given on any current masthead page.

⁽⁴⁵⁾ Programs employed included CARESS (R. W. Broach, Argonne National Laboratory; CARESS incorporated features of PROFILE: Blessing, R. G.; Coppend, P.; Becker, P. J. Appl. Cryst. 1972, 7, 488), NORMAL, EXFFT, and SEARCH (all from the MULTAN 80 package, Peter Main, Department of Physics, University of York, York, England), ORFLS (ORNL-TM-30-5), ORFFE (ORNL-TM-306), and ORTEP (ORNL-TM-5138). (46) Strouse, J.; Layten, S. W.; Strouse, C. E. J. Am. Chem. Soc. 1977,

^{99, 562.}