Synthesis, Structure, and Reactions of Chiral Rhenium Vinylidene and Acetylide Complexes of the Formula $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{X})\right]^{n+}$: Vinylidene Complexes That Are Formed by Stereospecific C_{β} Electrophilic Attack, Exist as Two $\mathrm{Re}=\mathrm{C}=\mathrm{C}$ Geometric Isomers, and Undergo Stereospecific C_{α} Nucleophilic Attack

Dwayne R. Senn, ${ }^{1 a}$ Andrew Wong, ${ }^{1 b}$ Alan T. Patton, ${ }^{1 a, b}$ Marianne Marsi, ${ }^{1 b}$
Charles E. Strouse, ${ }^{\mathbf{1 b}}$ and J. A. Gladysz*, ${ }^{\text {la-c }}$
Contribution from the Departments of Chemistry, University of Utah, Salt Lake City, Utah 84112, and University of California, Los Angeles, California 90024. Received December 21, 1987

Abstract

Sequential reactions of acyl complexes $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{COCH}_{2} \mathrm{R}\right)\left(\mathbf{2}: \mathrm{R}=\mathrm{H}(\mathrm{a}), \mathrm{CH}_{3}(\mathrm{~b}), \mathrm{C}_{6} \mathrm{H}_{5}(\mathbf{c})\right.$, 1-naphthyl (d)) with $\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{O}$ (0.5 equiv), base (1.0 equiv), and $\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{O}$ (0.5 equiv) give vinylidene complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{CHR})\right]^{+} \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\left(3 \mathrm{a}-\mathrm{d} \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}, 63-95 \%\right)$. Complexes $3 \mathrm{~b}-\mathrm{dCF}_{3} \mathrm{SO}_{3}{ }^{-}$crystallize as (95 $\pm 2):(5 \pm 2),>99: 1$, and $>99: 1$ mixtures of $s c / a c \mathrm{Re}=\mathrm{C}=\mathrm{C}$ geometric isomers but equilibrate to $(50 \pm 2):(50 \pm 2)$, (80 $\pm 2):(20 \pm 2)$ and $(80 \pm 2):(20 \pm 2)$ mixtures in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. Photolysis gives $(50 \pm 2):(50 \pm 2)$ photostationary states. An X -ray crystal structure of $s c-3 \mathrm{dPF}_{6}{ }^{-}\left(\mathrm{Re}=\mathrm{C}_{\alpha} 1.840(17) \AA\right)$ shows a $\mathrm{P}-\mathrm{Re}-\mathrm{C}_{\beta}-\mathrm{C}_{\mathrm{Np}}$ torsion angle of 161.5°, placing the naphthyl substituent anti to the bulky PPh_{3} ligand. Reactions of $3 \mathrm{a}-\mathrm{dCF}_{3} \mathrm{SO}_{3}{ }^{-}$with base give acetylide complexes $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ Re$(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{C} \equiv \mathrm{CR})(6 \mathrm{a}-\mathrm{d}, 59-93 \%)$. Reactions of $\mathbf{6 b - d}$ with $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}\left(-78{ }^{\circ} \mathrm{C}\right.$, assayed by NMR) give $(98 \pm 2):(2 \pm$ 2), $>99: 1$, and $>99: 1$ mixtures of $a c$ - and $s c-3 \mathrm{~b}-\mathrm{dCF}_{3} \mathrm{SO}_{3}{ }^{-}$. Analogous C_{β} methylation reactions ($\mathbf{6 b - c}$) are similarly stereospecific. This high 1,3-asymmetric induction is ascribed to electrophilic attack upon C_{β} of $\mathbf{6 b - d}$ from a direction opposite to the PPh_{3} ligand, giving the less stable $\mathrm{Re}=\mathrm{C}=\mathrm{C}$ isomer with the C_{B} substituent syn to the PPh_{3} ligand. Rates of $a c-3 \mathrm{~b}-\mathrm{dCF}_{3} \mathrm{SO}_{3}{ }^{-} \rightarrow$ $s c-3 \mathrm{~b}-\mathrm{dCF}_{3} \mathrm{SO}_{3}{ }^{-}$isomerization give $\Delta H^{\ddagger}=20.8,16.9,18.6 \mathrm{kcal} / \mathrm{mol}$ and $\Delta S^{\ddagger}=-5.7,-15.5,-10.5$ eu. A crystal structure of $6 \mathbf{b}\left(\operatorname{Re}-\mathrm{C}_{\alpha} 2.066(7) \AA\right.$) shows the $\mathrm{ReC} \equiv \mathrm{CCH}_{3}$ linkage to be essentially linear. Reactions of ac-and $s c-3 \mathrm{bCF} \mathrm{CO}_{3} \mathrm{SO}_{3}{ }^{-}$with attack upon the C_{α} face opposite to PPh_{3}.

Transition-metal vinylidene complexes, $\left[\mathrm{L}_{n} \mathrm{M}=\mathrm{C}=\mathrm{CRR}^{\prime}\right]^{n+}$, have received extensive study over the last decade. ${ }^{2-12}$ This interest

[^0]arises from a variety of factors. First, compounds that contain metal-carbon double bonds exhibit unique and diverse reactivity modes and structural properties. Second, surface-bound vinylidene ligands have been proposed to play a key role in hydrocarbon chain growth in the heterogeneously catalyzed Fischer-Tropsch process ("McCandlish mechanism"). ${ }^{13}$ Third, vinylidene complexes have been shown to be effective acetylene polymerization catalyst precursors. ${ }^{10 \mathrm{a}}$ Fourth, vinylidene complexes show good potential for use in organic synthesis, such as in the preparation of β lactams. ${ }^{14}$ Fifth, the parent vinylidene ligand, $=\mathrm{C}=\mathrm{CH}_{2}$, has been generated and spectroscopically characterized under high vacuum conditions on crystalline metal surfaces ${ }^{15}$ and under matrix
(11) Structurally characterized rhenium vinylidene complexes: (a) Kolobova, N. E.; Antonova, A. B.; Khitrova, O. M.; Antipin, M. Yu.; Struchkov, Yu. T. J. Organomet. Chem. 1977, 137, 69. (b) Pombeiro, A. J. L.; Jeffrey, J. C.; Pickett, C. J.; Richards, R. L. Ibid. 1984, 277, C7.
(12) For other work on vinylidene complexes, see the following lead articles and references cited therein: (a) Antonova, A. B.; Kovalenko, S. V.; Korniyets, E. D.; Johansson, A. A.; Struchkov, Yu. T.; Ahmedov, A. l.; Yanovsky, A 1. J. Organomet. Chem. 1983, 244, 35. (b) Roper, W. R.; Waters, J. M.; Wright, L. J.; van Meuers, F. Ibid. 1980, 201, C27. (c) Berke, H.; Huttner, G.; von Seyerl, J. Ibid. 1981, 218, 193. (d) Beevor, R. G.; Freeman, M. J.; Green, M.; Morton, C. E.; Orpen, A. G. J. Chem. Soc., Chem. Commun. 1985, 68. (e) Chan, Y. W.; Renner, M. W.; Balch, A. L. Organometallics 1983, 2, 1888. (f) Reger, D. L.; Swift, C. A. Ibid. 1984, 3, 876 . (g) Mayr, A.; Schaefer, K. C.; Huang, E. Y. J. Am. Chem. Soc. 1984, 106, 1517. (h) Birdwhistell, K. R.; Tonker, T. L.; Templeton, J. L. Ibid. 1985, 107, 4474 (i) Collman, J. P.; Brothers, P. J.; McElwee-White, L.; Rose, E. Ibid. 1985 107, 6110. (j) van Asselt, A.; Burger, B. J.; Gibson, V. C.; Bercaw, J. E. Ibid. 1986, 108, 5347. (k) Bullock, R. M. Ibid. 1987, $109,8087$.
(13) (a) McCandlish, L. E. J. Catal. 1983, 83, 362. (b) Hoel, E. L. Ansell, G. B.; Leta, S. Organometallics 1986, 5, 585. (c) Hoel, E. L. Ibid. 1986, 5,587
(14) (a) Barrett, A. G. M.; Sturgess, M. A. Tetrahedron Lett. 1986, 27, 3811; J. Org. Chem. 1987, 52, 3940. (b) Liebeskind, L. S.; Chidambaram, R. J. Am. Chem. Soc. 1987, 109, 5025. (c) Barrett, A. G. M.; Carpenter, N. E. Organometallics 1987, 6, 2249
(15) Hills, M. M.; Parmeter, J. E.; Weinberg, W. H. J. Am. Chem. Soc. 1987, 109, 597.

(c)

Figure 1. Comparison of (a) the HOMO of the $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})$ $\left(\mathrm{PPh}_{3}\right)^{+}$fragment with (b) $\mathrm{Re}=\mathrm{C}_{\alpha}$ geometric isomers in alkylidene complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(=\mathrm{CHR})\right]^{+}$and (c) $\mathrm{Re}=\mathrm{C}=\mathrm{C}_{\beta}$ geometric isomers in vinylidene complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\right.$ $(=\mathrm{C}=\mathrm{CHR})]^{+}$
isolation conditions on single metal centers. ${ }^{16}$ Finally, free vinylidene $\mathrm{C}=\mathrm{CH}_{2}$) rapidly rearranges to acetylene ($<10^{-12} \mathrm{~s}$) and thus, unlike metal vinylidene complexes, is not readily amenable to direct study. ${ }^{17}$

Transition-metal acetylide or alkynyl complexes, $\mathrm{L}_{n} \mathrm{MC} \equiv \mathrm{CR}$, are common precursors to, and reaction products of, vinylidene complexes. ${ }^{18,19}$ Their structural features and reactivity are also of fundamental interest, and they provide an opportunity to define transition-metal substituent effects upon $\mathrm{C} \equiv \mathrm{C}$ triple bond properties. ${ }^{20}$ Acetylide complexes of electron-donating $\mathrm{L}_{n} \mathrm{M}^{-}-$ systems should have two important resonance contributors, I and II, as shown in eq 1. Such acetylide complexes should, like yneamines $\left(\mathrm{R}_{2} \mathrm{~N} \mathrm{C} \equiv \mathrm{CR}\right){ }^{21}$ be nucleophilic at C_{β}.

$$
\begin{equation*}
\mathrm{L}_{n} \mathrm{M}-\mathrm{C} \equiv \mathrm{C}-\mathrm{R} \leftrightarrow \mathrm{~L}_{n} \mathrm{M}^{+}=\mathrm{CII}=\mathrm{C}^{-}-\mathrm{R} \tag{1}
\end{equation*}
$$

We have previously shown that the chiral rhenium fragment $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)^{+}$is a powerful π donor, with the highlying d orbital HOMO shown in Figure 1a. ${ }^{22}$ We have also
(16) Kline, E. S.; Kafafi, Z. H.; Hauge, R. H.; Margrave, J. L. J. Am. Chem. Soc. 1987, 109, 2402.
(17) Durản, R. P.; Amorebieta, V. T.; Colussi, A. J. J. Am. Chem. Soc. 1987, 109, 3154
(18) Review: Nast, R. Coord. Chem. Rev. 1982, 47, 89.
(19) Many of the articles cited in ref 2-12 also deal with acetylide complexes. See also the following references: (a) Bruce, M. 1.; Harbourne, D A.; Waugh, F.; Stone, F. G. A. J. Chem. Soc. A 1968, 356. (b) Sieber, W.; Wolfgruber, M.; Neugebauer, D.; Orama, O.; Kreißl, F. R. Z. Naturforsch B: Anorg. Chem., Org. Chem. 1983, 38b, 67. (c) Consiglio, G.; Morandini, F.; Sironi, A. J. Organomet. Chem. 1986, 306, C45. (d) Buang, N. A. Hughes, D. L.; Kashef, N.; Richards, R. L.; Pombeiro, A. J. L. Ibid. 1987, 323, C47. (e) Marder, T. B.; Zargarian, D.; Calabrese, J. C.; Herskovitz, T H.; Milstein, D. J. Chem. Soc., Chem. Commun. 1987, 1484.
(20) Kostic̄, N. M.; Fenske, R. F. Organometallics 1982, 1, 974.
(21) (a) Ficini, J. Tetrahedron 1976, 32, 1449. (b) Pitacco, G.; Valentin E. In The Chemistry of Amino, Nitroso and Nitro Compounds and Their Derivatives; Supplement F, Part I; Patai, S., Ed.; Wiley: New York, 1985; Chapter 15.

Scheme I. Synthesis of Vinylidene Complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{CHR})\right]^{+} \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\left(3 \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\right)$

3

6

2

reported that the corresponding rhenium alkylidene complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(=\mathrm{CHR})\right]^{+} \mathrm{PF}_{6}{ }^{-}$can easily be prepared as either of the two $\mathrm{Re}=\mathrm{C}$ geometric isomers illustrated in Figure 1 b as well as in optically pure form. ${ }^{22,23}$ Overlap of the rhenium fragment HOMO with the $=$ CHR ligand p acceptor orbital is maximized in each isomer. These complexes undergo stereospecific or stereoselective C_{α} nucleophilic ($\mathrm{Nu}:^{-}$) attack to give alkyl complexes of the formula $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{CHRNu})$ in high diastereomeric excess. We have also shown that chiral rhenium vinyl complexes $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CX}=\mathrm{CRR}^{\prime}\right)$ undergo stereoselective C_{β} electrophilic (E^{+}) attack to give alkylidene complexes of the formula $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\right.$ ($=$ CXCRR'E) $]^{+}$in high diastereomeric excess. ${ }^{24}$ Hence, we sought to determine whether similar structural and chemical phenomena would be exhibited by analogous rhenium vinylidene and acetylide complexes.

In this paper, we report (a) high-yield syntheses of chiral rhenium vinylidene complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\right.$ $\left.\left.\mathrm{CRR}^{\prime}\right)\right]^{+} \mathrm{X}^{-}$and acetylide complexes ($\left.\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})$ $\left(\mathrm{PPh}_{3}\right)(\mathrm{C} \equiv \mathrm{CR})$, (b) the first observation of $\mathrm{M}=\mathrm{C}=\mathrm{C}$ geometric isomerism in vinylidene complexes, (c) the thermal and photochemical interconversion of these geometric isomers and the

[^1]corresponding rates and activation parameters, (d) examples of stereospecific C_{α} nucleophilic attack upon the vinylidene complexes and stereospecific C_{β} electrophilic attack upon the acetylide complexes, and (e) X-ray crystal structures that establish the stereochemistry of these transformations and bonding features of both types of complexes. A portion of this study has been communicated. ${ }^{25}$

Results

1. Syntheses of Vinylidene Complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\right.$ $\left.\left(\mathbf{P P h}_{3}\right)(=\mathbf{C}=\mathbf{C H R})\right]^{+} \mathbf{C F}_{3} \mathbf{S O}_{3}{ }^{-}$. The "methyl ester" $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ $\mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)(1)$ was treated with Grignard reagents $\mathrm{RCH} \mathrm{H}_{2} \mathrm{MgBr}$ as previously reported ${ }^{26}$ to give the known acyl complexes $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{COCH}_{2} \mathrm{R}\right)(\mathbf{2} ; \mathbf{a}, \mathrm{R}=\mathrm{H} ; \mathbf{b}$, $\mathrm{R}=\mathrm{CH}_{3} ; \mathrm{c}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$). Reaction of 1 and the Grignard reagent derived from 1-(chloromethyl)naphthalene, $1-\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{CH}_{2} \mathrm{MgCl}$, gave the new acyl complex $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{COCH}_{2}-\right.$ $\left.\left(1-\mathrm{C}_{10} \mathrm{H}_{7}\right)\right)(2 \mathrm{~d}, 76 \%)$.

Acyl complexes $\mathbf{2 a}-\mathbf{d}$ were treated with 1.0 equiv of triflic anhydride, $\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{O}$ (Scheme I). This reagent had previously been shown by Hughes to efficiently convert iron acyl complexes $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{COCH}_{2} \mathrm{R}\right)$ to observable carbene complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{C}\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right) \mathrm{CH}_{2} \mathrm{R}\right)\right]^{+}$. $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$, which then fragmented to the corresponding vinylidene complexes. ${ }^{5}$ However, ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR monitoring $\left(-80^{\circ} \mathrm{C}\right.$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2},<5 \mathrm{~min}$) indicated formation of a $50: 50$ mixture of the desired vinylidene complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}\right.$ $\left.(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\mathrm{CHR})\right]^{+} \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\left(3 \mathrm{a}-\mathrm{dCF}_{3} \mathrm{SO}_{3}^{-}\right)^{27}$ and undesired hydroxycarbene complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\right.$ $\left.\left(=\mathrm{C}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{R}\right)\right]^{+} \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\left(4 \mathrm{a}-\mathrm{dCF}_{3} \mathrm{SO}_{3}{ }^{-}\right)$. Identical mixtures were obtained with 0.5 equiv or large excesses of $\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{O}$. Hydroxycarbene complexes $\mathbf{4 a - b} \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$have previously been shown to rapidly form from acyl complexes $\mathbf{2 a - b}$ and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}^{26}$ Hence, the probable initial intermediate in Scheme I, carbene complex $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{C}\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right) \mathrm{CH}_{2} \mathrm{R}\right)\right]^{+}$ $\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\left(5\right.$, Scheme I), likely fragments to $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ and $3 \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$at a rate faster than its formation.

This problem was circumvented by treating the $3 \mathrm{CF}_{3} \mathrm{SO}_{3}^{-} /$ $4 \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$mixtures with 1 equiv of the bases $\mathrm{K}^{+}-t-\mathrm{BuO}^{-}$or TMP. ${ }^{27 \mathrm{~d}}$ Both cationic compounds were deprotonated (Scheme I) to give $50: 50$ mixtures of acetylide complexes $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}$ $(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{C} \equiv \mathrm{CR})(6$; isolated below) and acyl complexes 2. These mixtures were then treated with 0.5 equiv of $\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{O}$. The remaining acyl complex 2 was converted to $3 \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$, and the acetylide complex 6 acted as a base for the $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ liberated. This multistep but convergent "one-pot" preparation gave vinylidene complexes $3 \mathrm{a}-\mathrm{dCF}_{3} \mathrm{SO}_{3}{ }^{-}$as crude powders in 84-95\% yields.
2. Characterization of Vinylidene Complexes. Subsequent crystallization gave analytically pure $3 \mathrm{~b}-\mathrm{dCF}_{3} \mathrm{SO}_{3}^{-}(63-78 \%$ from $\mathbf{2 b - d}$), which were characterized by IR and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{\prime} \mathrm{H}\right\}$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy (Table I). The crystals were dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$, and ${ }^{1} \mathrm{H}$ NMR spectra were immediately recorded at $-80^{\circ} \mathrm{C}$. It was thus shown that crystalline $\mathbf{3 b}$ $\mathrm{dCF}_{3} \mathrm{SO}_{3}{ }^{-}$consisted of $(95 \pm 2):(5 \pm 2),>99: 1$, and $>99: 1$ mixtures of $s c / a c^{27 a} \mathrm{Re}=\mathrm{C}=\mathrm{C}$ geometric isomers (Figure 1), respectively. The solutions were kept at room temperature for 24 h , after which time $(50 \pm 2):(50 \pm 2),(80 \pm 2):(20 \pm 2)$, and $(80 \pm 2):(20 \pm 2) s c / a c$ equilibrium mixtures were present (see Scheme II). The geometric isomer assignments were made in anticipation that the vinylidene ligand would prefer to adopt

[^2]

Figure 2. Structure of the cation of naphthylvinylidene complex sc-$\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{C}=\mathrm{CH}\left(1-\mathrm{C}_{10} \mathrm{H}_{7}\right)\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}\left(s c-3 \mathrm{dPF}_{6}{ }^{-}\right)$. Top: numbering diagram; bottom: Newman projection down $\mathrm{C} 2-\mathrm{C} 1-\mathrm{Re}$ with phenyl rings omitted.
conformations VI ($a c$) and VII ($s c$; Figure 1c), which maximize overlap of the rhenium fragment d orbital HOMO (see III) with the $\mathrm{C}_{\alpha} \mathrm{p}$ acceptor orbital, and that steric interaction between the bulky PPh_{3} ligand and the C_{β} alkyl substituent would destabilize VI. These assumptions were verified as described below.

Vinylidene complexes 3a-dCF $\mathrm{SO}_{3}{ }^{-}$exhibited several noteworthy spectroscopic features. The $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$ ligand ${ }^{1} \mathrm{H}$ NMR resonances (ca. $\delta 6.00$) were among the furthest downfield observed in cationic rhenium complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{X})\right]^{+}$, in accord with the high π acidity of vinylidene ligands. ${ }^{20}$ The IR $\nu_{\mathrm{N}=0}$ were also greater than usual, and weak $\nu_{\mathrm{C}}-\mathrm{C}$ were present. Downfield C_{α} resonances were noted in ${ }^{13} \mathrm{C}$ NMR spectra. Solutions of $3 \mathrm{a}-\mathrm{dCF}_{3} \mathrm{SO}_{3}^{-}$were yellow to yellow-brown, and naphthylvinylidene complex $3 \mathrm{dCF}_{3} \mathrm{SO}_{3}{ }^{-}$exhibited a long wavelength UV absorption at 367 nm ($\epsilon 7600$; Experimental Section). This band was absent in $3 \mathrm{bCF}_{3} \mathrm{SO}_{3}{ }^{-}$and naphthalene.

Assignments of NMR resonances to $s c / a c$ isomers were made on the basis of the enriched samples described above and the stereospecific syntheses given below. The C_{β} protons in the $s c$ isomers VII, which are syn to the PPh_{3} ligand, were upfield of those in the $a c$ isomers VI. Hence, the upfield $=\mathrm{CH}_{2}$ resonance of parent vinylidene complex $3 \mathrm{aCF}_{3} \mathrm{SO}_{3}{ }^{-}$was assigned to the proton syn to $\mathrm{PPh}_{3}\left(\mathrm{H}_{a c}{ }^{27 \mathrm{a}}\right)$. Finally, the $\mathrm{PPh}_{3}{ }^{13} \mathrm{C}$ NMR resonances of naphthylvinylidene complex $a c-3 \mathrm{dCF}_{3} \mathrm{SO}_{3}{ }^{-}$, which has the naphthyl group directed toward the PPh_{3} ligand, were poorly resolved at -80 to $-50^{\circ} \mathrm{C}$. However, sharp resonances were observed for the more stable $\mathrm{Re}=\mathrm{C}=\mathrm{C}$ isomer, $s c-3 \mathrm{dCF}_{3} \mathrm{SO}_{3}{ }^{-}$ $\left(-80^{\circ} \mathrm{C}\right)$. This suggests increased rotational barriers for the $\mathrm{Re}-\mathrm{P}$ and/or P-C bonds in ac-3dCF $\mathrm{SO}_{3}{ }^{-}$.
3. X-ray Crystal Structure of $\boldsymbol{s c}-\left[\left(\eta^{5}-\mathrm{C}_{5} \mathbf{H}_{5}\right) \mathbf{R e}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\right.$ $\left.\left(=\mathbf{C}=\mathbf{C H}\left(1-\mathbf{C}_{10} \mathbf{H}_{7}\right)\right)\right]^{+} \mathbf{P F}_{6}{ }^{-}\left(\boldsymbol{s c}-\mathbf{3 d P F}_{6}{ }^{-}\right)$. Difficulty was encountered in obtaining vinylidene complex crystals suitable for X-ray analysis or in solving the subsequent data sets. Finally, crystals of naphthylvinylidene complex $s c-3 \mathrm{dPF}_{6}{ }^{-}$were obtained as described below. X-ray data were acquired as summarized in Table II. Refinement, described in the Experimental Section, yielded the structure shown in Figure 2. Positional parameters, bond distances, and bond angles are summarized in Tables III-V.

Scheme II. Interconversion of Vinylidene Complexes $3 \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$and Acetylide Complexes $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{C} \equiv \mathrm{CR})(6)$

> Kinetic ratios $(a c / s c)$ $\begin{array}{cll}\text { 3b } & (98 \pm 2):(2 \pm 2) \\ & \text { 3c } & >99: 1 \\ & \text { 3d } & >99: 1\end{array}$

Equilibrium ratios ($\mathrm{ac} / \mathrm{sc}$)
$3 b \quad(50 \pm 2):(50 \pm 2)$
3c $(20 \pm 2):(80 \pm 2)$
3d $(20 \pm 2):(80 \pm 2)$

The Newman projection in the bottom part of Figure 2 illustrates the anti relationship of the C_{8} naphthyl substituent and the PPh_{3} ligand in $s c-3 \mathrm{dPF}_{6}{ }^{-}$(compare VII), thus confirming the $\mathrm{Re}=\mathrm{C}=\mathrm{C}$ geometric isomer assignments made above. The $\mathrm{C}_{3}-\mathrm{C}_{\mathrm{Np}}(\mathrm{C} 2-\mathrm{C} 11)$ bond defines 161.5° and 71.0° torsion angles with the $\mathrm{Re}-\mathrm{Pl}$ and $\mathrm{Re}-\mathrm{N}$ bonds, respectively. Although the C_{β} hydrogen was not located, its calculated position extends over the π cloud of the $\mathrm{C} 61-\mathrm{C} 66 \mathrm{PPh}_{3}$ phenyl ring. Distances to the phenyl carbons range from $3.24-3.29 \AA$ (C61, C66) to $3.84-3.91 \AA$ (C63, C64). This accounts for the upfield ${ }^{1} \mathrm{H}$ NMR shifts in $s c \mathrm{Re}=$ $\mathrm{C}=\mathrm{C}$ isomers noted above.
4. Syntheses and Characterization of Acetylide Complexes $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{C} \equiv \mathbf{C R})(6)$. Vinylidene complexes $3 \mathrm{a}-\mathrm{d} \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$were treated with bases $\mathrm{K}^{+}-t-\mathrm{BuO}^{-}$or TMP. ${ }^{27 \mathrm{~d}}$ Workup gave acetylide complexes 6a-d as powders in 53-93\% yields (Scheme II). Subsequent crystallization gave analytically pure $\mathbf{6 b} \mathbf{- d}\left(72-82 \%\right.$ from $\mathbf{3 d}-\mathbf{d C F}_{3} \mathrm{SO}_{3}{ }^{-}$).

Acetylide complexes 6a-d were characterized by IR and ${ }^{1} \mathrm{H}$, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, and $\left.{ }^{31} \mathrm{P}^{1}{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy (Table VI). In all cases, diagnostic weak IR $\nu_{\mathrm{C}} \equiv \mathrm{C}$ were observed. The parent acetylide complex 6a exhibited a sharp, medium IR $\nu_{\mathrm{C}-\mathrm{H}}$ at $3282 \mathrm{~cm}^{-1}$. This assignment was confirmed by the observation of an IR $\nu_{\mathrm{C}-\mathrm{D}}$ at $2268 \mathrm{~cm}^{-1}$ in deuterioacetylide complex $6 \mathrm{a}-d_{1} .{ }^{28}$ A proton-coupled ${ }^{13} \mathrm{C}$ NMR spectrum of 6 a showed $\mathrm{C}_{3}\left({ }^{1} J_{\mathrm{CH}}=228 \mathrm{~Hz}\right)$ to be downfield of $\mathrm{C}_{\alpha}\left({ }^{2} J_{\mathrm{CH}}=39.4 \mathrm{~Hz}\right)$. The C_{α} carbon also showed an appreciable ${ }^{2} J_{\mathrm{CP}}$, whereas ${ }^{3} J_{\mathrm{CP}}$ for C_{β} was $<1 \mathrm{~Hz}$. The downfield $\mathrm{C} \equiv \mathrm{C}$ resonances of $\mathbf{6 b - d}$ also showed ${ }^{3} J_{\mathrm{CP}}$ of $<1 \mathrm{~Hz}$ and were accordingly assigned to $\mathrm{C}_{\boldsymbol{\beta}}$. Solutions of $\mathbf{6 a - d}$ were

[^3]orange-red, and naphthyl acetylide complex 6d showed pronounced longer wavelength UV absorptions (Experimental Section) at 320 $\mathrm{nm}(\epsilon 16000)$ and $360 \mathrm{~nm}(\mathrm{sh}, \epsilon 7900)$. These bands were absent in $\mathbf{6 b}$ and naphthalene.
5. Reactions of Acetylide Complexes with Electrophiles. 1,3Asymmetric Induction. Reaction of methyl acetylide complex 6b and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ (1.0 equiv, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) was monitored by ${ }^{1} \mathrm{H}$ NMR at $-78{ }^{\circ} \mathrm{C}$. Methylvinylidene complex $3 \mathrm{bCF}_{3} \mathrm{SO}_{3}{ }^{-}$rapidly formed as a $(98 \pm 2):(2 \pm 2)$ mixture of $\mathrm{ac} / \mathrm{sc}$ isomers (Scheme II). Aryl acetylide complexes $\mathbf{6 c - d}$ were similarly treated with $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$. This gave arylvinylidene complexes ac-3c-dCF $\mathrm{SO}_{3}{ }^{-}$as $>99: 1$ mixtures of $a c / s c$ isomers. As a check, these solutions were kept at $25^{\circ} \mathrm{C}$ for 24 h , and the equilibrium $s c / a c$ isomer ratios noted above were obtained. These data are consistent with a transition state in which the protic electrophile approaches C_{β} from a direction opposite to the bulky PPh_{3} ligand. Such a transition state would give the less stable $\mathrm{Re}=\mathrm{C}=\mathrm{C}$ isomer when the electrophile is smaller than the acetylide complex C_{β} substituent. Reaction of $\mathbf{6 d}$ with $\mathrm{HPF}_{6} \cdot \mathrm{Et}_{2} \mathrm{O}$ and room temperature workup gave the sample of $s c-3 \mathrm{dPF}_{6}{ }^{-}$used in the above crystal structure

The reaction of methyl acetylide complex $\mathbf{6 b}$ and methylating agent $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{~F}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}\right)$ was monitored by ${ }^{1} \mathrm{H}$ NMR. Dimethylvinylidene complex $\left[\left(\eta^{5} \cdot \mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\right.$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right]^{+} \mathrm{FSO}_{3}{ }^{-}\left(7 \mathrm{bFSO}_{3}{ }^{-}\right)$formed cleanly at $0^{\circ} \mathrm{C}$ (Scheme IIIa) and was isolated in 80% yield after recrystallization. Two ${ }^{1} \mathrm{H}$ NMR methyl resonances were observed (δ 1.96, 1.24; Table I). Similar reaction of $\mathbf{6 b}$ with the deuteriated methylating agent $\mathrm{CD}_{3} \mathrm{SO}_{3} \mathrm{~F}$ gave sc-[($\left.\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right.$ $\left.\left.\left(\mathrm{CD}_{3}\right)\right)\right]^{+} \mathrm{FSO}_{3}^{-}\left(s c-7 \mathrm{~b}-d_{3} \mathrm{FSO}_{3}^{-} ;\right.$IX $)$, in which the downfield δ 1.96 resonance of $7 \mathrm{bFSO}_{3}{ }^{-}$was absent (detection limit 1%). Upon warming the sample above $0^{\circ} \mathrm{C}$, the $\delta 1.96$ resonance appeared

Scheme III. Stereospecific Methylation of Acetylide Complexes 6
(a)

7b FSO ${ }_{3}{ }^{-}$

IX

X
Kinetic ratio: >99:1 (ac/sc) Equilibrium ratio: $50: 50$ ($\mathrm{ac} / \mathrm{sc}$)

6 c
sc- 7c FSO ${ }_{3}{ }^{-}$

XI

XII

Kinetic ratio: >99:1 (ac/sc) Equilibrium ratio: $(25 \pm 2):(75 \pm 2)(\mathrm{ac} / \mathrm{sc})$
as the $\delta 1.24$ resonance diminished. After 18 h at $25^{\circ} \mathrm{C}$, both resonances were of equal intensity. Thus, methylation of $\mathbf{6 b}$ occurred stereospecifically, and the stereochemistry was assigned (Scheme IIIa) by analogy to the above protonation reactions. Accordingly, the upfield methyl ${ }^{1} \mathrm{H}$ NMR resonance of $7 \mathrm{bFSO}_{3}{ }^{-}$ ($\delta 1.24$) was assigned to the methyl group syn to the PPh_{3} ligand ($a c-\mathrm{CH}_{3}{ }^{27 \mathrm{a}}$), consistent with the C_{β} proton shielding trends noted above.

The reaction of phenyl acetylide complex $6 \mathbf{c}$ and $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{~F}$ was similarly monitored by ${ }^{1} \mathrm{H}$ NMR (Scheme IIIb). At $0{ }^{\circ} \mathrm{C}$, methyl phenyl vinylidene complex $a c-\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(=\mathrm{C}=\right.$ $\left.\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right)\right]^{+} \mathrm{FSO}_{3}^{-}\left(a c-7 \mathrm{cFSO}_{3}^{-} ; \mathrm{XI}\right)$ formed as a single $\mathrm{Re}=\mathrm{C}=\mathrm{C}$ isomer, the stereochemistry of which was assigned by analogy to the above reactions. Complex $a c-7 \mathrm{cFSO}_{3}{ }^{-}$equilibrated to a $(75 \pm 2):(25 \pm 2) s c / a c$ mixture over the course of 4 h at $30-45^{\circ} \mathrm{C}$. Hence, as with the protonation of 6 c , the less stable $\mathrm{Re}=\mathrm{C}=\mathrm{C}$ isomer formed initially. As expected, the ${ }^{1} \mathrm{H}$ NMR methyl resonance of the sc isomer (XII; $\delta 1.58$) was upfield of that of the $a c$ isomer (XI; $\delta 2.33$).

Figure 3. Molecular structure of methyl acetylide complex $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ $\mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C} \equiv \mathrm{CCH}_{3}\right)(6 b)$.

Scheme IV. Reactions of Vinylidene Complexes with $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$: Stereochemistry of C_{α} Attack

$7 \mathrm{~b}^{2} \mathrm{CF}_{3} \mathrm{SO}_{3}, \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{CH}_{3}$
ac $-3 \mathrm{bCF}_{3} \mathrm{SO}_{3}, \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{CH}_{3}$
sc- $\mathbf{3} \mathrm{b}_{\mathrm{CF}}^{3}$ SO $\mathrm{SO}_{3}, \mathrm{R}=\mathrm{CH}_{3}, \mathrm{R}=\mathrm{H}$
$8 \mathrm{CF}_{3} \mathrm{SO}_{3} \cdot \mathrm{R}=\mathrm{R}=\mathrm{CH}_{3}$
(Z) $-9 \mathrm{CF}_{3} \mathrm{SO}_{3}, \mathrm{R}=\mathrm{H}, \mathrm{R}=\mathrm{CH}_{3}$
(E) $-9 \mathrm{CF}_{3} \mathrm{SO}_{3}, \mathrm{R}=\mathrm{CH}_{3}, \mathrm{R}^{\prime}=\mathrm{H}$

XIII
6. X-ray Crystal Structure of Methyl Acetylide Complex $\left(\eta^{5}-\mathrm{C}_{5} \mathbf{H}_{5}\right) \operatorname{Re}(\mathbf{N O})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{C} \equiv \mathbf{C C H}_{3}\right)(6 \mathrm{~b})$. We sought to determine whether a distortion of the ideally linear $\mathrm{Re}-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta}-\mathrm{R}$ linkage in acetylide complexes 6 a-d might contribute to the stereospecificity of C_{β} electrophilic attack. Hence, X-ray data were collected for methyl acetylide complex $\mathbf{6 b}$ as summarized in Table II. Refinement, described in the Experimental Section, yielded the structure shown in Figure 3. The near-linearity of the $\mathrm{Re}-\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta}(\mathrm{Re}-\mathrm{C} 1-\mathrm{C} 2)$ and $\mathrm{C}_{\alpha} \equiv \mathrm{C}_{\beta}-\mathrm{C}_{\gamma}(\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3)$ linkages (176-177 $)$ is evident. Positional parameters, bond distances, and bond angles are summarized in Tables VII-IX.
7. Rates of Interconversion of Vinylidene Complex $\mathrm{Re}=\mathbf{C = C}$ Isomers. The rates of $\mathrm{Re}=\mathrm{C}=\mathrm{C}$ isomerization of vinylidene complexes $a c-\mathbf{3 b}-\mathrm{dCF}_{3} \mathrm{SO}_{3}{ }^{-}$were measured as outlined in Table X. The $a c \rightleftarrows s c K_{\text {eq }}$, which were needed to extract k_{1} from $k_{\text {obsd }}$, did not change significantly over the temperature range of the rate measurements. The k_{1} values gave the activation parameters summarized in Table X.

Control experiments were conducted to probe whether $\mathrm{Re}=$ $\mathrm{C}=\mathrm{C}$ isomerization might occur by a C_{β} deprotonation/protonation mechanism. First, similar isomerization rates and acti-

Figure 4, Comparison of vacant acceptor orbitals in (a) alkylidene and (b) vinylidene ligands.
vation parameters were obtained for methyl phenyl vinylidene complex ac-7cFSO ${ }_{3}^{-}$(Table X), which lacks a C_{β} proton. Second, the concentration of the $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$counteranion, the most plausible proton carrier, was varied. The isomerization rate of ac$3 \mathrm{dCF}_{3} \mathrm{SO}_{3}{ }^{-}$was measured in the presence of added (n $\left.\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}^{+} \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\left(0.27\right.$ equiv). This gave $k_{1}=6.20 \times 10^{-4} \mathrm{~s}^{-1}$ $\left(25.4^{\circ} \mathrm{C}\right)$, slightly lower than that without added triflate $(6.75$ $\times 10^{-4} \mathrm{~s}^{-1}, 24.6^{\circ} \mathrm{C}$). Tetrafluoroborate complexes $a c-3 \mathrm{CBF}_{4}{ }^{-}$and $a c-3 \mathrm{dBF}_{4}^{-}$were generated from $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ and the corresponding acetylide complexes at $-78^{\circ} \mathrm{C}$. Their isomerization rates ($k_{1}=$ $6.27 \times 10^{-4} \mathrm{~s}^{-1}\left(22.2^{\circ} \mathrm{C}\right)$ and $\left.5.27 \times 10^{-4} \mathrm{~s}^{-1}\left(25.4^{\circ} \mathrm{C}\right)\right)$ were comparable to those in Table X. Hence, it is concluded that $\mathrm{Re}=\mathrm{C}=\mathrm{C}$ isomerization occurs predominantly or exclusively by simple bond rotation.

The ${ }^{1} \mathrm{H}$ NMR spectra of parent vinylidene complex $3 \mathrm{aCF}_{3} \mathrm{SO}_{3}{ }^{-}$, methylvinylidene complex $3 \mathrm{bCF} \mathrm{SO}_{3}{ }^{-}$, and dimethylvinylidene complex $7 \mathrm{bFSO}{ }_{3}{ }^{-}$were recorded at $110^{\circ} \mathrm{C}$ and 200 MHz . No coalescence of C_{β} proton or methyl resonances was observed. This bounds $\Delta G^{*}{ }_{110^{\circ} \mathrm{C}}$ for $\mathrm{Re}=\mathrm{C}=\mathrm{C}$ isomerization in these compounds as $\geq 18 \mathrm{kcal} / \mathrm{mol}$.
8. Photochemistry of Vinylidene Complexes. The (80 ± 2) : (20 ± 2) equilibrium mixtures of $s c / a c \mathrm{Re}=\mathrm{C}=\mathrm{C}$ isomers of arylvinylidene complexes $3 \mathrm{c}-\mathrm{dCF}_{3} \mathrm{SO}_{3}^{-}$were irradiated with a Hanovia 450 W lamp $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}\right)$. Analysis by ${ }^{1} \mathrm{H}$ NMR showed clean formation of $(50 \pm 2):(50 \pm 2)$ photostationary states of $s c / a c$ isomers. The samples were allowed to return to thermal equilibrium in the dark, and additional irradiation cycles were conducted without apparent sample deterioration.
9. Reactions of Vinylidene Complexes with Nucleophiles. We sought to determine whether the above vinylidene complexes underwent, like their alkylidene complex counterparts, stereospecific nucleophilic attack at C_{α}. First, dimethylvinylidene complex $7 \mathbf{b} \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$was prepared in situ from methyl acetylide complex $6 \mathbf{b}$ and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{CH}_{3}$ and then treated with $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$. This gave the vinyl phosphonium salt $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{C}\right.$ $\left.\left.\left(\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right)=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right]^{+} \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\left(8 \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\right)$in 60% yield after recrystallization (Scheme IV).
$\mathrm{A}(98 \pm 2):(2 \pm 2)$ mixture of the $a c / s c$ isomers of methylvinylidene complex $3 \mathrm{bCF}_{3} \mathrm{SO}_{3}{ }^{-}$was generated as described above and treated with $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$ at $-78^{\circ} \mathrm{C}$ (Scheme IV). This gave, as assayed by ${ }^{1} \mathrm{H}$ NMR at $-80^{\circ} \mathrm{C}$, a $(98 \pm 2):(2 \pm 2)$ mixture of vinyl phosphonium salts (Z) - and $(E)-\left[\left(\eta^{3}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}\left(\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right)=\mathrm{CHCH}_{3}\right)\right]^{+} \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}((Z)-$ and (E) $9 \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$; Scheme IV). Workup gave (Z) $-9 \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\left({ }^{3} J_{\mathrm{PC}}=\mathrm{CH}\right.$ $=36.3 \mathrm{~Hz}$) in 57% yield. In a parallel experiment, a $(95 \pm 2):(5$ ± 2) mixture of the $s c / a c$ isomers of $3 \mathrm{bCF}_{3} \mathrm{SO}_{3}^{-}$was generated by the low-temperature dissolution of a crystalline sample, as described above. Subsequent reaction with $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$ at $-78^{\circ} \mathrm{C}$ gave a $(95 \pm 2):(5 \pm 2)$ mixture of (E) - and $(Z) \cdot 9 \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$. Workup gave $(E)-9 \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\left({ }^{3} \mathrm{~J}_{\mathrm{PC}=\mathrm{CH}}=60.7 \mathrm{~Hz}\right)$ in 80% yield. Neither (Z) - or $(E)-9 \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$isomerized in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (1 day, 22 ${ }^{\circ} \mathrm{C}$). The $(Z) /(E)$ assignments were made from previous observations that vinyl phosphonium salts, including related iron complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}\left(\mathrm{PPhR}_{2}\right)=\mathrm{CH}_{2}\right)\right]^{+}$, exhibit ${ }^{3} J_{\mathrm{PC}}=$ CHtrans that are considerably greater than ${ }^{3} J_{\mathrm{PC}}=\mathrm{CH}$ cis. $5 \mathrm{~b}, 29$ These data establish that nucleophilic attack upon C_{α} of vinylidene complexes $3 \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$occurs stereospecifically from a direction anti to the bulky PPh_{3} ligand, as illustrated by transition state XIII in Scheme IV.

Discussion

1. Vinylidene and Acetylide Complexes. Structure about Rhenium. It is interesting to compare the structures of na-
phthylvinylidene complex $s c-3 \mathrm{dPF}_{6}{ }^{-}$and methyl acetylide complex $\mathbf{6 b}$ to those of other $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(\mathrm{X})\right]^{n+}$ complexes. First, both exhibit the ca. $90^{\circ} \mathrm{P}-\mathrm{Re}-\mathrm{N}, \mathrm{P}-\mathrm{Re}-\mathrm{Cl}$, and $\mathrm{N}-\mathrm{Re}-\mathrm{Cl}$ bond angles noted earlier for this formally octahedral class of compounds (Tables V and IX). ${ }^{22 a, 23,24}$

The $\mathrm{Re}=\mathrm{C}_{\alpha}$ double bond in naphthylvinylidene complex sc$3 \mathrm{dPF}_{6}{ }^{-}(1.840(17) \AA)$ is, as expected, much shorter than the $\mathrm{Re}-\mathrm{C}_{\alpha}$ single bonds in alkyl complexes (-)-(R)-($\left.\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}-$ $(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)(2.203 \text { (8) } \AA)^{23}$ and $(S S, R R)-\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{C}_{6} \mathrm{H}_{5}\right)(2.215$ (4) $\AA) .{ }^{22 \mathrm{a}}$ However, it is also somewhat shorter than the $\mathrm{Re}=\mathrm{C}$ double bond in benzylidene complex $\left[\left(\eta^{5} \cdot \mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(=\right.$ $\left.\left.\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right]^{+} \mathrm{PF}_{6}^{-}$(1.949 (6) \AA). ${ }^{22 \mathrm{a}}$ This additional $5-6 \%$ contraction can be attributed to two factors. First, vinylidene ligands are superior π acids. ${ }^{20,30}$ Whereas alkylidene ligands have only a p acceptor orbital on C_{α}, vinylidene ligands have an additional, higher energy, π^{*} acceptor orbital (Figure 4). In $s c-3 \mathrm{dPF}_{6}{ }^{-}$, the π^{*} orbital would bond with an occupied d orbital that is of lower energy than, and orthogonal to, that shown in III. ${ }^{30}$ Second, bonds to sp hybridized carbons (vinylidene C_{α}) are intrinsically shorter than those to sp^{2} hybridized carbons (alkylidene C_{α}). For example, the $\mathrm{C}=\mathrm{C}$ bond in allene ($1.31 \AA, \mathrm{sp}^{2} / \mathrm{sp}$) is contracted $2-3 \%$ from that in ethylene ($1.34 \AA, \mathrm{sp}^{2} / \mathrm{sp}^{2}$). ${ }^{31}$

The $\mathrm{Re}-\mathrm{C}_{\alpha}$ single bond in methyl acetylide complex $\mathbf{6 b}$ (2.066 (7) \AA) is contracted $6-7 \%$ from those in analogous rhenium alkyl complexes. This also follows from the electronic and hybridization effects described above. However, Fenske, and Kostić have noted that both C_{α} acceptor orbitals in acetylide ligands (π^{*}, π^{*}) are of higher energy than those in vinylidene ligands and accordingly rank acetylide ligands as poor π acceptors. ${ }^{20}$ Also, the $\mathrm{H}_{3} \mathrm{C}-\mathrm{C}$ bond in propyne ($1.46 \AA ; \mathrm{sp}^{3} / \mathrm{sp}$) is shortened 5% from that in propane ($1.54 \AA ; \mathrm{sp}^{3} / \mathrm{sp}^{3}$). ${ }^{31}$ Hence, hybridization effects are likely responsible for most of the $\mathrm{Re}-\mathrm{C}_{\alpha}$ bond contraction in $\mathbf{6 b}$. Thus, acetylide complex resonance form II (eq 1) has a much greater influence upon ligand reactivity than structure. ${ }^{32}$
2. Structures of Related Complexes. Although crystal structures of many vinylidene ${ }^{2,4,6 b-d, 8 a, b, 9 b, 10 b, 11,12 b, c}$ and acetylide ${ }^{6 c, 18,19 b-e}$ complexes have been determined, several are particularly relevant to this study. First, the structures of two other rhenium vinylidene complexes, $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{CO})_{2}\left(=\mathrm{C}=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{R}\right)$ (10) and

11

12
XIV
(29) Seyferth, D.; Fogel, J. J. Organomet. Chem. 1966, 6, 205.
(30) (a) Schilling, B. E. R.; Hoffmann, R.; Lichtenberger, D. L. J. Am Chem. Soc. 1979, 101, 585. (b) Schilling, B. E. R.; Hoffmann, R.; Faller, J. W. Ibid. 1979, 101, 592
(31) March, J. A. Advanced Organic Chemistry, 3rd ed.; Wiley: New York, 1985; pp 18-19.
(32) Yneamines are, like acetylide complexes 6 , nucleophilic at C_{β}, but none have been structurally characterized to our knowledge. ${ }^{21}$ it would be of interest to compare their $\mathrm{sp}^{3} / \mathrm{sp}$ nitrogen-carbon bond lengths with the $\mathrm{sp}^{3} / \mathrm{sp}^{3}$ nitrogen-carbon bond lengths in saturated amines.

Table I. Spectroscopic Characterization of Rhenium Vinylidene Complexes

complex	$1 \mathrm{R}^{a}\left(\mathrm{~cm}^{-1}\right)$	${ }^{1} \mathrm{H} N \mathrm{NR}{ }^{b}$ (δ)	${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ${ }^{\text {c }}$ (ppm)	${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}^{\text {d }}$ (ppm)
	$\begin{aligned} & \nu_{\mathrm{N}=0} 1739(\mathrm{~s}) \\ & \nu_{\mathrm{C}}=\mathrm{c} 1641(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 7.60-7.20\left(\mathrm{~m}, 3 \mathrm{C}_{6} \mathrm{H}_{5}\right) \\ & 6.02\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) \\ & 5.50\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=20.0,\right. \\ & \left.{ }^{3} J_{\mathrm{HP}}=1.0, s c-\mathrm{H}\right) \\ & 4.87\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=20.0,\right. \\ & \left.{ }^{4} J_{\mathrm{HP}}=1.4, a c-\mathrm{H}\right) \end{aligned}$	$\begin{aligned} & 329.9\left(\mathrm{~d}, J=9.9, \mathrm{C}_{\alpha}\right) \\ & 120.4\left(\mathrm{q}, J_{\mathrm{CF}}=319.6, \mathrm{CF}_{3}\right) \\ & 113.8\left(\mathrm{~s}, \mathrm{C}_{\beta}\right) \\ & 98.6\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) \\ & \mathrm{PPh}_{3} \text { at: } \\ & 132.9(\mathrm{~d}, J=11.5, o) \\ & 132.7(\mathrm{~d}, J=2.8, p) \\ & 129.7(\mathrm{~d}, J=11.8, m) \\ & 129.7(\mathrm{~d}, J=62.2, i) \end{aligned}$	17.0 (s)
	$\begin{aligned} & \nu_{\mathrm{N}=0} 1733(\mathrm{~s}) \\ & \nu_{\mathrm{C}=\mathrm{C}} 1664(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 7.90-7.25\left(\mathrm{~m}, 3 \mathrm{C}_{6} \mathrm{H}_{5}\right) \\ & 6.19\left(\mathrm{dq},{ }^{3} J_{\mathrm{HH}}=8.0,\right. \\ & \left.{ }^{4} J_{\mathrm{HP}}=1.0,=\mathrm{CH}\right) \\ & 6.03\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) \\ & 1.24\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.0, \mathrm{CH}_{3}\right) \end{aligned}$	$\begin{aligned} & 328.5\left(\mathrm{~d}, J=10.1, \mathrm{C}_{\alpha}\right) \\ & 126.0\left(\mathrm{~s}, \mathrm{C}_{\beta}\right) \\ & \quad 120.6\left(\mathrm{q}, J_{\mathrm{CF}}=319.9, \mathrm{CF}_{3}\right) \\ & 98.3\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) \\ & 7.9\left(\mathrm{~s}, \mathrm{CH}_{3}\right) \\ & \mathrm{PPh}_{3} \mathrm{at}: \\ & 133.0(\mathrm{~d}, J=10.7, o) \\ & 132.6(\mathrm{~s}, p) \\ & 130.5(\mathrm{~d}, J=61.9, i) \\ & 129.7(\mathrm{~d}, J=9.8, \mathrm{~m}) \end{aligned}$	18.7 (s)
	$\begin{aligned} & \nu_{\mathrm{N}=0} 1733(\mathrm{~s}) \\ & \nu_{\mathrm{C}}=\mathrm{c} 1664(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 7.90-7.25\left(\mathrm{~m}, 3 \mathrm{C}_{6} \mathrm{H}_{5}\right) \\ & 6.02\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) \\ & 5.40\left(\mathrm{dq},{ }^{3} J_{\mathrm{HH}}=7.8,\right. \\ & \left.{ }^{4} J_{\mathrm{HP}}=1.0,=\mathrm{CH}\right) \\ & 1.91\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.8, \mathrm{CH}_{3}\right) \end{aligned}$	$\begin{aligned} & 329.7\left(\mathrm{~d}, J=10.5, \mathrm{C}_{\alpha}\right) \\ & 125.3\left(\mathrm{~s}, \mathrm{C}_{\beta}\right) \\ & 120.6\left(\mathrm{q}, J_{\mathrm{CF}}=319.9, \mathrm{CF}_{3}\right) \\ & 98.5\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) \\ & 10.0\left(\mathrm{~s}, \mathrm{CH}_{3}\right) \\ & \mathrm{PPh}_{3} \mathrm{at}: \\ & 133.0(\mathrm{~d}, J=11.0, o) \\ & 132.6(\mathrm{~s}, p) \\ & 129.8(\mathrm{~d}, J=64.0, i) \\ & 129.8(\mathrm{~d}, J=11.1, \mathrm{~m}) \end{aligned}$	18.3 (s)
	$\begin{aligned} & \nu_{\mathrm{N}}=01731(\mathrm{~s}) \\ & \nu_{\mathrm{C}}=\mathrm{C} 1651(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 7.75-7.20\left(\mathrm{~m}, 3 \mathrm{C}_{6} \mathrm{H}_{5}\right) \\ & 7.02(\mathrm{~s},=\mathrm{CH}) \\ & 7.01\left(\mathrm{~m}, 1 \mathrm{H} \text { of } \mathrm{C}_{6} \mathrm{H}_{5}\right) \\ & 6.85\left(\mathrm{t}, J_{\mathrm{HH}}=7.7,\right. \\ & \left.2 \mathrm{H} \text { of } \mathrm{C}_{6} \mathrm{H}_{5}\right) \\ & 6.50\left(\mathrm{~d}, J_{\mathrm{HH}}=7.6,\right. \\ & \left.2 \mathrm{H} \text { of } \mathrm{C}_{6} \mathrm{H}_{5}\right) \\ & 6.04\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) \end{aligned}$	$\begin{aligned} & 332.2\left(\mathrm{~d}, J=9.6, \mathrm{C}_{\alpha}\right) \\ & 124.6\left(\mathrm{~s}, \mathrm{C}_{\beta}\right) \\ & 120.4\left(\mathrm{q}, J_{\mathrm{CF}}=319.7, \mathrm{CF}_{3}\right) \\ & 98.9\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) \end{aligned}$ CPh at: 133.2 (s, i) 128.3 (s, m) $127.8(\mathrm{~s}, p)$ $126.4(\mathrm{~s}, o)$ PPh_{3} at: $\begin{aligned} & 133.0(\mathrm{~d}, J=10.6, o) \\ & 132.1(\mathrm{~s}, p) \\ & 130.2(\mathrm{~d}, J=58.4, i) \\ & 129.2(\mathrm{~d}, J=11.0, \mathrm{~m})^{\mathrm{e}} \end{aligned}$	18.3 (s)
 $\mathrm{sc}-3 \mathrm{c} \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$	$\begin{aligned} & \nu_{\mathrm{N}=0} 1731(\mathrm{~s}) \\ & \nu_{\mathrm{C}}=\mathrm{c} 1651(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 7.75-7.20\left(\mathrm{~m}, 4 \mathrm{C}_{6} \mathrm{H}_{5}\right) \\ & 6.14\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{HP}}=1.4,=\mathrm{CH}\right) \\ & 6.03\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) \end{aligned}$	$\begin{aligned} & 335.6\left(\mathrm{~d}, J=10.8, \mathrm{C}_{\alpha}\right) \\ & 127.0\left(\mathrm{~s}, \mathrm{C}_{\beta}\right) \\ & 120.6\left(\mathrm{q}, J_{\mathrm{CF}}=320.0, \mathrm{CF}_{3}\right) \\ & 98.9\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) \\ & \mathrm{CPh} \mathrm{at}: \\ & 133.2(\mathrm{~s}, i) \\ & 131.7(\mathrm{~s}, p) \\ & 129.5(\mathrm{~s}, o) \\ & 129.1(\mathrm{~s}, m) \\ & \mathrm{PPh}_{3} \mathrm{at}: \\ & 133.0(\mathrm{~d}, J=11.4, o) \\ & 132.8(\mathrm{~d}, J=2.7, p) \\ & 129.8(\mathrm{~d}, J=11.8, m) \\ & 128.4(\mathrm{~d}, J=56.3, i) \end{aligned}$	17.0 (s)
 $\mathrm{ac}-3 \mathrm{dCF}_{3} \mathrm{SO}_{3}^{-}$	$\begin{aligned} & \nu_{\mathrm{N}}=01734(\mathrm{~s}) \\ & \nu_{\mathrm{C}}=\mathrm{C} 1641(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 7.90-7.17\left(\mathrm{~m}, 3 \mathrm{C}_{6} \mathrm{H}_{5},\right. \\ & \left.6 \mathrm{H} \text { of } \mathrm{C}_{10} \mathrm{H}_{7},=\mathrm{CH}\right) \\ & 6.47(\mathrm{~d}, J=7.1,1 \mathrm{H} \\ & \text { of } \left.\mathrm{C}_{10} \mathrm{H}_{7}\right) \\ & 6.03\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) \end{aligned}$	$\begin{aligned} & 332.9\left(\mathrm{~d}, J=9.3, \mathrm{C}_{\alpha}\right) \\ & 120.2\left(\mathrm{q}, J_{\mathrm{CF}}=318.8, \mathrm{CF}_{3}\right) \\ & 98.6\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) \\ & \mathrm{C}_{10} \mathrm{H}_{7} \text { and } \mathrm{C}_{\beta} \mathrm{at}: \\ & 133.9(\mathrm{~s}), 132.8(\mathrm{~s}), 132.2(\mathrm{~s}) \\ & 127.9(\mathrm{~s}), 127.5(\mathrm{~s}), 127.1(\mathrm{~s}) \\ & 126.1(\mathrm{~s}), 126.0(\mathrm{~s}), 126.0(\mathrm{~s}) \\ & 125.4(\mathrm{~s}), 124.5(\mathrm{~s}) \\ & \mathrm{PPh}_{3} \mathrm{at}: \\ & 132.5(\mathrm{~d}, J=17.0, o) \\ & 132.4(\mathrm{~s}, p) \\ & 129.5(\mathrm{~d}, J=11.4, \mathrm{~m}) \\ & 129.2(\mathrm{~d}, J=62.3, i)^{g} \end{aligned}$	16.8 (s)

Table I (Continued)

complex	$1 \mathrm{R}^{a}\left(\mathrm{~cm}^{-1}\right)$	${ }^{1} \mathrm{H} \mathrm{NMR}{ }^{6}(\delta)$	${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}^{\text {c }}$ (ppm)	${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}^{d}(\mathrm{ppm})$
	$\begin{aligned} & \nu_{\mathrm{N}}=\mathrm{O} 1734(\mathrm{~s}) \\ & \nu_{\mathrm{C}}=\mathrm{C} 1641(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 7.70-7.20\left(\mathrm{~m}, 3 \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{10} \mathrm{H}_{7}\right) \\ & 6.83(\mathrm{~s},=\mathrm{CH}) \\ & 6.02\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) \end{aligned}$	$336.3\left(\mathrm{~d}, J=10.8, \mathrm{C}_{\alpha}\right)$ $120.7\left(\mathrm{q}, J_{\mathrm{CF}}=320.5, \mathrm{CF}_{3}\right)$ $99.1\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$ $\mathrm{C}_{10} \mathrm{H}_{7}$ and C_{8} at: 133.8 (s), 132.2 (s), 129.4 (s) 128.1 (s), 127.9 (s), 126.9 (s) 126.8 (s), 126.1 (s), 125.3 (s) 124.3 (s) $)^{f, h}$ PPh_{3} at: $133.0(\mathrm{~d}, J=11.5, o)$ $132.8(\mathrm{~d}, J=2.7, p)$ $129.8(\mathrm{~d}, J=11.7, m)$ $129.4(\mathrm{~d}, J=62.4, i)$	16.6 (s)
	$\begin{aligned} & \nu_{\mathrm{N}=0} 1748(\mathrm{~s}) \\ & \nu_{\mathrm{C}}-\mathrm{C} 1654(\mathrm{~m})^{t} \end{aligned}$	$\begin{aligned} & 7.62-7.32\left(\mathrm{~m}, 3 \mathrm{C}_{6} \mathrm{H}_{5}\right) \\ & 6.02\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) \\ & 1.96\left(\mathrm{~s}, s c-\mathrm{CH}_{3}\right) \\ & 1.24\left(\mathrm{~s}, a c-\mathrm{CH}_{3}\right) \end{aligned}$	$\begin{aligned} & 327.9\left(\mathrm{~d}, J=11.1, \mathrm{C}_{\alpha}\right) \\ & 136.8\left(\mathrm{~s}, \mathrm{C}_{\beta}\right) \\ & 98.2\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) \\ & 17.5\left(\mathrm{~s}, s c-\mathrm{CH}_{3}\right) \\ & 13.8\left(\mathrm{~s}, a c-\mathrm{CH}_{3}\right) \\ & \mathrm{PPh}_{3} \mathrm{at}: \\ & 133.2(\mathrm{~s}, p) \\ & 132.8(\mathrm{~d}, J=18.9, o) \\ & 131.1(\mathrm{~d}, i)^{\prime} \\ & 129.8(\mathrm{~d}, J=12.8, m) \end{aligned}$	18.4 (s)

${ }^{a}$ Thin film unless noted; $\nu_{\mathrm{N} \equiv \mathrm{o}}$ and $\nu_{\mathrm{C}}=\mathrm{c}$ for $\mathbf{3 b - d}$ were assigned from spectra of equilibrium mixtures. ${ }^{b 1} \mathrm{H}$ NMR spectra were recorded at 200 or 300 MHz in CDCl_{3} at ambient probe temperature and were referenced to internal $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$. All couplings are in Hz . ${ }^{c 13} \mathrm{C}$ NMR spectra were recorded at 50 or 75 MHz in CDCl_{3} at ambient probe temperature and were referenced to internal $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ unless noted. All couplings are in Hz and are to ${ }^{31} \mathrm{P}$ unless noted. Assignments of ipso (i), para (p), meta (m), and ortho (o) carbon resonances were made as described in footnote cof Table 1 in the following: Buhro, W. E.; Georgiou, S.; Fernández, J. M.; Patton, A. T.; Strouse, C. E.; Gladysz, J. A. Organometallics 1986, $5,956$. ${ }^{d}{ }^{31} \mathrm{P}$ NMR spectra were recorded at 32 MHz in CDCl_{3} at ambient temperature with an external lock and were referenced to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. ${ }^{e}$ In $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-80^{\circ} \mathrm{C}$. ${ }^{f} \mathrm{C}_{\beta}$ resonance cannot be distinguished from the naphthyl resonances. ${ }^{8} \mathrm{At} 0{ }^{\circ} \mathrm{C}$. ${ }^{h}$ One resonance obscured by PPh_{3} resonances. 'in CHCl_{3}. ${ }^{J}$ Upfield resonance of doublet obscured.

Table II. Summary of Crystallographic Data for $s c-\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{C}=\mathrm{CH}\left(1-\mathrm{C}_{10} \mathrm{H}_{7}\right)\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}\left(s c-3 \mathrm{dPF}_{6}{ }^{-}\right)$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C} \equiv \mathrm{CCH}_{3}\right)(6 b)$

compd	$s c-3 \mathrm{dPF}_{6}{ }^{-}$	6b
mol formula	$\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{~F}_{6} \mathrm{NOP}_{2} \mathrm{Re}$	$\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NOPRe}$
formula wt	840.76	582.66
cryst system	monoclinic	triclinic
space group	C2/c	Pİ
cell dimensions		
a, \AA	25.768 (8)	8.055 (4)
b, \AA	11.215 (3)	16.419 (10)
c, \AA	23.475 (8)	9.084 (5)
α, deg		91.46 (5)
β, deg	104.08 (3)	68.57 (4)
γ, deg		77.36 (4)
V, \AA^{3}	6580 (4)	1095.6 (8)
Z	8	
temp of collectn	$21(1){ }^{\circ} \mathrm{C}$	$-158(5){ }^{\circ} \mathrm{C}$
$d_{\text {calcd }}, \mathrm{g} / \mathrm{cm}^{3}$	1.70	1.78
$d_{\text {obsd }}, \mathrm{g} / \mathrm{cm}^{3}\left(22^{\circ} \mathrm{C}\right)$	1.71	1.79
cryst dimensns, mm	$0.19 \times 0.24 \times 0.24$	$0.14 \times 0.16 \times 0.18$
radiation, \AA	$\lambda(\mathrm{Mo} \mathrm{K} \alpha) 0.71069$	$\lambda(\mathrm{MoK} \alpha) 0.71069$
data collectn method	$\theta-2 \theta$	$\theta-2 \theta$
scan speed, deg/ min^{-1}	2.4	6.0
reflens measd	$+h,+k, \pm l ; 3-50^{\circ}$	$+h, \pm k, \pm l ; 3-50^{\circ}$
scan range	$\begin{gathered} \mathrm{K} \alpha_{1}-1.0 \text { to } \\ \mathrm{K} \alpha_{2}+1.3 \end{gathered}$	$\begin{gathered} \mathrm{K} \alpha_{1}-1.0 \text { to } \\ \mathrm{K} \alpha_{2}+1.0 \end{gathered}$
no. of reflens between std	97	97
total unique data	5828	3975
cutoff for obsd data	$I>1.5 \sigma(I)$	$I>3.0 \sigma(I)$
obsd data	4197	3852
abs coeff (μ), cm^{-1}	39.00	55.32
method of refinement	full matrix least squares	full matrix least squares
no. of variables	420	266
$R=\sum\left(\left\|F_{\mathrm{o}}-F_{\mathrm{c}}\right\|\right) / \sum\left\|F_{\mathrm{o}}\right\|$	0.063	0.041
$R_{w}=\sum_{\sum\left\|F_{0}\right\| w^{1 / 2}}\left(\left\|F_{\mathrm{c}}-F_{\mathrm{c}}\right\|\right) w^{1 / 2} \mid$	0.054	0.051
goodness of fit	1.43	1.75
weighting factor, w	$\begin{aligned} & 1 /\left(\sigma^{2}\left(F_{\mathrm{o}}\right)+\right. \\ & \left.0.0016\left(F_{\mathrm{o}}\right)^{2}\right) \end{aligned}$	$\begin{aligned} & 1 /\left(\sigma^{2}\left(F_{0}\right)+\right. \\ & \left.0.0045\left(F_{0}\right)^{2}\right) \end{aligned}$

trans. $(\mathrm{dppe})_{2} \mathrm{Re}(\mathrm{Cl})\left(=\mathrm{C}=\mathrm{CHC}_{6} \mathrm{H}_{5}\right)(11),{ }^{27 e}$ have been reported. ${ }^{11}$ They exhibit longer $\mathrm{Re}=\mathrm{C}_{\alpha}$ bonds (1.90 (2), 2.046 (8) \AA)
than $s c-\mathbf{- ~}^{\mathbf{d P F}}{ }_{6}{ }^{-}(1.840(17) \AA$). This can be attributed to the greater π basicity of the $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)^{+}$fragment. Osmium tert-butylvinylidene complex $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Os}(\mathrm{CO})\right.$ -$\left.\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{C}=\mathrm{CH}\left(t-\mathrm{C}_{4} \mathrm{H}_{9}\right)\right)\right]^{+} \mathrm{BF}_{4}{ }^{-}(\mathbf{1 2})$, which is isoelectronic with $3 \mathrm{a}-\mathrm{dCF}_{3} \mathrm{SO}_{3}{ }^{-}$, has been prepared by Geoffroy. ${ }^{10 b}$ It has a $\mathrm{M}=\mathrm{C}_{\alpha}$ bond length (1.879 (6) \AA) closer to that of $s c-3 \mathrm{dPF}_{6}{ }^{-}$.

The alkylidene/vinylidene $\mathrm{Re}=\mathrm{C}_{\alpha}$ bond contraction noted above has precedent. For example, the $\mathrm{Mn}=\mathrm{C}_{\alpha}$ bond in manganese vinylidene complex $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})_{2}\left(=\mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$ (1.79 (2) $\AA)^{13 \mathrm{c}}$ is shorter than that in alkylidene complex (η^{5} $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})_{2}\left(=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)\left(1.885\right.$ (2) \AA). ${ }^{33}$ Similarly, the $\mathrm{Ru}=\mathrm{C}_{\alpha}$ bonds in ruthenium vinylidene complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ $\left.\operatorname{Ru}(\mathrm{L})_{2}\left(=\mathrm{C}=\mathrm{CRCH}_{3}\right)\right]^{+} \mathrm{X}^{-}\left(\mathrm{L}=\right.$ phosphine; $\mathrm{R}=\mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} ; 1.839$ (10)-1.863 (10) \AA) are shorter than those in α-methoxycarbene complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ru}(\mathrm{L})_{2}\left(=\mathrm{C}\left(\mathrm{OCH}_{3}\right) \mathrm{CH}_{2} \mathrm{R}\right)\right]^{+} \mathrm{PF}_{6}{ }^{-}(1.93$ (2) -1.959 (6) \AA). ${ }^{60,9 b}$

To our knowledge, $6 \mathbf{d}$ is the only structurally characterized rhenium acetylide complex. However, the structure of an acetylide complex of a neighboring third-row metal, $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{W}(\mathrm{CO})_{2}{ }^{-}$ $\left(\mathrm{P}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right)}\right)\left(\mathrm{C} \equiv \mathrm{C}\left(i-\mathrm{C}_{3} \mathrm{H}_{7}\right)\right)$, has been reported ($\mathrm{W}-\mathrm{C}_{\alpha} 2.134$ (11) \AA). ${ }^{1 \mathrm{~b}}$ This complex and $\mathbf{6 b}$ have $\mathrm{C} \equiv \mathrm{C}$ bond lengths (1.205 (15), $1.192(11) \AA$) identical with those in organic acetylenes ($1.20 \AA$) ${ }^{31}$ Although longer $\mathrm{C} \equiv \mathrm{C}$ bonds might be expected in acetylide complexes as a result of resonance form II, it is believed that the lengths of bonds of bond order between two and three are not very sensitive to small changes in bond order. ${ }^{34}$
3. $\mathbf{M}=\mathbf{C}=\mathbf{C}$ Isomerization in Vinylidene Complexes. Several factors made it difficult to obtain accurate rate data for vinylidene complex $\mathrm{Re}=\mathrm{C}=\mathrm{C}$ isomerizations over a wide range of temperatures (Table X-A). However, the available data show ΔG^{*} $\left(21^{\circ} \mathrm{C}\right.$) to be relatively constant, with the ΔH^{*} increase for $a c-3 / \mathrm{c} / \mathrm{d} / \mathrm{bCF}_{3} \mathrm{SO}_{3}{ }^{-} \rightarrow s c-3 / \mathrm{c} / \mathrm{d} / \mathrm{bCF}_{3} \mathrm{SO}_{3}{ }^{-}$offset by a ΔS^{\ddagger} increase (Table X-B). This suggests an isokinetic relationship, ${ }^{35}$ with an isokinetic temperature of $124^{\circ} \mathrm{C}$. Such behavior is associated with a common rate-determining step and has been observed previously for cis/trans isomerizations of stilbenes and

[^4]Table III. Atomic Coordinates of Non-Hydrogen Atoms in $s c-\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{C}=\mathrm{CH}\left(1-\mathrm{C}_{10} \mathrm{H}_{7}\right)\right)\right]^{+} \mathrm{PF}_{6}^{-}\left(s c-3 \mathrm{dPF}_{6}{ }^{-}\right)$

atom	x	y	z
Re	$0.143380(15)$	$0.07009(4)$	$0.220330(19)$
P1	$0.08013(9)$	$0.04261(22)$	$0.12689(11)$
O	$0.05719(35)$	$0.13208(85)$	$0.27685(41)$
N	$0.09177(36)$	$0.10412(73)$	$0.25325(38)$
C1	$0.14280(37)$	$-0.09219(150)$	$0.23163(41)$
C2	$0.14055(46)$	$-0.21450(110)$	$0.23958(53)$
C11	$0.15965(39)$	$-0.26903(97)$	$0.30002(50)$
C12	$0.19257(42)$	$-0.21268(102)$	$0.34567(52)$
C13	$0.21071(42)$	$-0.26286(112)$	$0.40131(48)$
C14	$0.19541(48)$	$-0.37708(124)$	$0.41106(51)$
C16	$0.10882(83)$	$-0.61294(145)$	$0.32959(88)$
C15	$0.14281(74)$	$-0.55499(130)$	$0.37317(66)$
C17	$0.08961(69)$	$-0.56292(143)$	$0.27412(70)$
C18	$0.10542(54)$	$-0.45071(118)$	$0.26269(63)$
C19	$0.14217(41)$	$-0.38492(100)$	$0.30810(54)$
C20	$0.16083(46)$	$-0.44023(103)$	$0.36410(54)$
C31	$0.23503(37)$	$0.07751(130)$	$0.25569(63)$
C32	$0.22368(42)$	$0.07473(128)$	$0.19569(56)$
C33	$0.19699(46)$	$0.18096(162)$	$0.17304(59)$
C34	$0.19109(43)$	$0.25104(112)$	$0.22200(77)$
C35	$0.21342(49)$	$0.18301(130)$	$0.27411(55)$
C41	$0.11449(38)$	$0.02006(93)$	$0.06876(42)$
C42	$0.15007(40)$	$-0.07272(99)$	$0.07169(47)$
C43	$0.17953(46)$	$-0.08803(110)$	$0.02898(58)$
C44	$0.16949(58)$	$-0.00670(136)$	$-0.01822(57)$
C45	$0.13255(51)$	$0.08435(132)$	$-0.02204(53)$
C46	$0.10525(42)$	$0.09751(106)$	$0.02122(50)$
C52	$-0.01834(38)$	$0.15329(94)$	$0.07698(43)$
C51	$0.03524(35)$	$0.16831(86)$	$0.10503(42)$
C53	$-0.05055(41)$	$0.25220(111)$	$0.05869(48)$
C54	$-0.02953(51)$	$0.36439(115)$	$0.06703(54)$
C55	$0.02339(54)$	$0.38151(114)$	$0.09461(68)$
C56	$0.05590(42)$	$0.28310(105)$	$0.11331(55)$
C61	$0.03627(33)$	$-0.08651(87)$	$0.12513(42)$
C62	$0.00600(39)$	$-0.09388(99)$	$0.16697(46)$
C63	$-0.02688(41)$	$-0.18959(116)$	$0.16734(52)$
C64	$-0.02941(44)$	$-0.28205(103)$	$0.12751(59)$
C65	$0.00045(49)$	$-0.27419(98)$	$0.08616(51)$
C66	$0.03399(43)$	$-0.17725(96)$	$0.08615(48)$
P2	$0.17007(14)$	$-0.54268(30)$	$0.58033(15)$
F1	$0.11359(41)$	$-0.59044(142)$	$0.56700(64)$
F2	$0.18758(52)$	$-0.65782(83)$	$0.61638(41)$
F3	$0.22866(42)$	$-0.51156(140)$	$0.59702(66)$
F4	$0.15287(74)$	$-0.42687(98)$	$0.54666(48)$
F5	$0.16354(46)$	$-0.47826(90)$	$0.63683(38)$
	$0.17630(53)$	$-0.60402(97)$	$0.52352(38)$

Table IV. Bond Distances in sc-3dPF ${ }_{6}^{-}(\AA)$

Re-C1	$1.840(17)$	C32-C33	$1.413(18)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.387(17)$	$\mathrm{C} 33-\mathrm{C} 34$	$1.431(18)$
$\mathrm{C} 2-\mathrm{C} 11$	$1.513(15)$	$\mathrm{C} 34-\mathrm{C} 35$	$1.438(17)$
$\mathrm{Re}-\mathrm{N}$	$1.735(9)$	$\mathrm{C} 41-\mathrm{C} 42$	$1.377(14)$
$\mathrm{N}-\mathrm{O}$	$1.200(10)$	$\mathrm{C} 41-\mathrm{C} 46$	$1.388(13)$
Re-C31	$2.306(9)$	$\mathrm{C} 42-\mathrm{C} 43$	$1.408(14)$
Re-C32	$2.281(11)$	C43-C44	$1.410(17)$
Re-C33	$2.331(12)$	C44-C45	$1.384(18)$
Re-C34	$2.368(11)$	C45-C46	$1.377(15)$
Re-C35	$2.312(11)$	C51-C52	$1.388(12)$
Re-P1	$2.413(3)$	C51-C56	$1.389(14)$
P1-C41	$1.816(10)$	C52-C53	$1.389(14)$
P1-C51	$1.817(9)$	C53-C54	$1.365(16)$
P1-C61	$1.831(9)$	C54-C55	$1.373(16)$
C11-C12	$1.351(14)$	C55-C56	$1.391(15)$
C11-C19	$1.403(14)$	C61-C66	$1.360(13)$
C12-C13	$1.394(14)$	C61-C62	$1.397(12)$
C13-C14	$1.376(16)$	C62-C63	$1.369(14)$
C14-C20	$1.426(16)$	C63-C64	$1.387(15)$
C15-C16	$1.342(21)$	C64-C65	$1.380(15)$
C15-C20	$1.402(17)$	C65-C66	$1.389(14)$
C16-C17	$1.393(22)$	P2-F1	$1.510(10)$
C17-C18	$1.369(17)$	P2-F2	$1.550(10)$
C18-C19	$1.444(17)$	P2-F3	$1.506(10)$
C19-C20	$1.427(15)$	P2-F4	$1.529(10)$
C31-C32	$1.367(16)$	P2-F5	$1.555(9)$
C31-C35	$1.419(17)$	P2-F6	$1.543(9)$

Table V. Key Bond Angles in $s c-3 \mathrm{dPF}_{6}{ }^{-}$(deg)

$\mathrm{N}-\mathrm{Re}-\mathrm{P} 1$	$90.7(3)$	$\mathrm{Re}-\mathrm{P} 1-\mathrm{C} 51$	$113.6(3)$
$\mathrm{C} 1-\mathrm{Re}-\mathrm{P} 1$	$88.7(3)$	$\mathrm{Re}-\mathrm{P} 1-\mathrm{C} 61$	$113.5(3)$
$\mathrm{C} 1-\mathrm{Re}-\mathrm{N}$	$96.9(4)$	$\mathrm{C} 32-\mathrm{C} 31-\mathrm{C} 35$	$109.4(12)$
$\mathrm{Re}-\mathrm{C} 1-\mathrm{C} 2$	$178.1(9)$	$\mathrm{C} 31-\mathrm{C} 32-\mathrm{C} 33$	$109.3(13)$
$\mathrm{Re}-\mathrm{N}-\mathrm{O}$	$177.2(8)$	$\mathrm{C} 32-\mathrm{C} 33-\mathrm{C} 34$	$107.3(12)$
$\mathrm{C} 1-\mathrm{Re}-\mathrm{C} 31$	$91.6(5)$	$\mathrm{C} 33-\mathrm{C} 34-\mathrm{C} 35$	$107.0(12)$
$\mathrm{C} 1-\mathrm{Re}-\mathrm{C} 32$	$95.7(5)$	$\mathrm{C} 31-\mathrm{C} 35-\mathrm{C} 34$	$106.8(12)$
$\mathrm{C} 11-\mathrm{Re}-\mathrm{C} 33$	$128.5(5)$	$\mathrm{C} 42-\mathrm{C} 41-\mathrm{C} 46$	$119.6(10)$
$\mathrm{C} 11-\mathrm{Re}-\mathrm{C} 34$	$150.2(4)$	$\mathrm{P} 1-\mathrm{C} 41-\mathrm{C} 42$	$120.5(8)$
$\mathrm{C} 1-\mathrm{Re}-\mathrm{C} 35$	$119.7(5)$	$\mathrm{P} 1-\mathrm{C} 41-\mathrm{C} 46$	$119.8(8)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 11$	$120.7(12)$	$\mathrm{C} 41-\mathrm{C} 42-\mathrm{C} 43$	$121.6(10)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 19$	$119.1(11)$	$\mathrm{C} 42-\mathrm{C} 43-\mathrm{C} 44$	$117.0(11)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 2$	$123.6(11)$	$\mathrm{C} 45-\mathrm{C} 44-\mathrm{C} 43$	$121.3(11)$
$\mathrm{C} 19-\mathrm{C} 11-\mathrm{C} 2$	$117.3(11)$	$\mathrm{C} 46-\mathrm{C} 45-\mathrm{C} 44$	$119.9(11)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$123.8(11)$	$\mathrm{C} 45-\mathrm{C} 46-\mathrm{C} 41$	$120.5(11)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$	$119.2(11)$	$\mathrm{C} 52-\mathrm{C} 51-\mathrm{C} 56$	$118.8(9)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 20$	$119.0(11)$	$\mathrm{P} 1-\mathrm{C} 51-\mathrm{C} 52$	$122.1(8)$
$\mathrm{C} 16-\mathrm{C} 15-\mathrm{C} 20$	$120.5(14)$	$\mathrm{P} 1-\mathrm{C} 51-\mathrm{C} 56$	$118.9(7)$
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$122.3(15)$	$\mathrm{C} 51-\mathrm{C} 52-\mathrm{C} 53$	$120.0(10)$
$\mathrm{C} 18-\mathrm{C} 17-\mathrm{C} 16$	$119.9(15)$	$\mathrm{C} 54-\mathrm{C} 53-\mathrm{C} 52$	$120.4(10)$
$\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19$	$119.8(14)$	$\mathrm{C} 53-\mathrm{C} 54-\mathrm{C} 55$	$120.7(11)$
$\mathrm{C} 11-\mathrm{C} 19-\mathrm{C} 20$	$118.7(11)$	$\mathrm{C} 54-\mathrm{C} 55-\mathrm{C} 56$	$119.4(12)$
$\mathrm{C} 11-\mathrm{C} 19-\mathrm{C} 18$	$123.2(12)$	$\mathrm{C} 51-\mathrm{C} 56-\mathrm{C} 55$	$120.7(10)$
$\mathrm{C} 20-\mathrm{C} 19-\mathrm{C} 18$	$118.1(11)$	$\mathrm{C} 66-\mathrm{C} 61-\mathrm{C} 62$	$119.2(9)$
$\mathrm{C} 15-\mathrm{C} 20-\mathrm{C} 14$	$120.4(13)$	$\mathrm{P} 1-\mathrm{C} 61-\mathrm{C} 66$	$122.2(7)$
$\mathrm{C} 15-\mathrm{C} 20-\mathrm{C} 19$	$119.3(13)$	$\mathrm{P} 1-\mathrm{C} 61-\mathrm{C} 62$	$118.6(8)$
$\mathrm{C} 14-\mathrm{C} 20-\mathrm{C} 19$	$120.2(11)$	$\mathrm{C} 63-\mathrm{C} 62-\mathrm{C} 61$	$120.2(10)$
$\mathrm{C} 41-\mathrm{P} 1-\mathrm{C} 51$	$106.8(5)$	$\mathrm{C} 62-\mathrm{C} 63-\mathrm{C} 64$	$120.6(10)$
$\mathrm{C} 41-\mathrm{P} 1-\mathrm{C} 61$	$106.5(5)$	$\mathrm{C} 65-\mathrm{C} 64-\mathrm{C} 63$	$118.9(10)$
$\mathrm{C} 51-\mathrm{P} 1-\mathrm{C} 61$	$105.1(4)$	$\mathrm{C} 64-\mathrm{C} 65-\mathrm{C} 66$	$120.2(10)$
$\mathrm{Re}-\mathrm{P} 1-\mathrm{C} 41$	$110.8(3)$	$\mathrm{C} 61-\mathrm{C} 66-\mathrm{C} 65$	$120.7(9)$

azo compounds. ${ }^{35 a}$ However, few examples of isokinetic relationships are known in inorganic and organometallic reactions. ${ }^{356}$

Interestingly, the activation parameters for $s c \rightarrow a c \mathrm{Re}=\mathrm{C}$ isomerization of alkylidene complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\right.$ $\left.\left(\mathrm{PPh}_{3}\right)(=\mathrm{CHR})\right]^{+} \mathrm{PF}_{6}{ }^{-}\left(\mathrm{IV} \rightarrow \mathrm{V}\right.$, Figure $1 \mathrm{~b} ; \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}{ }^{22 \mathrm{a}} \mathrm{CH}_{3}$. ${ }^{22 \mathrm{~b}}$ mesityl; ${ }^{22 \mathrm{c}} \Delta H^{*}=20.9,17.4,18.8 \mathrm{kcal} / \mathrm{mol} ; \Delta S^{*}=-3.8,-7.3$, 0.5 eu) are quite close to those for $a c \rightarrow s c \mathrm{Re}=\mathrm{C}=\mathrm{C}$ isomerization in Table X. ${ }^{36}$ This is in one sense surprising, since the $=\mathrm{CRR}^{\prime} \pi$ terminus is farther from the metal in vinylidene complexes. This should reduce the steric component of the isomerization barrier. ${ }^{37}$ Hence, there is likely a greater electronic component of the isomerization barrier in vinylidene complexes. Unfortunately, this is impossible to ascribe to a single factor, since the extra $\mathrm{C}_{\alpha}=\mathrm{C}_{\beta}$ unsaturation in vinylidene complexes creates a complex array of conformation-dependent attractive and repulsive metal/ C_{α} orbital interactions. ${ }^{20,30}$

The $K_{\text {eq }}$ for $s c \rightleftarrows a c \mathrm{Re}=\mathrm{C}$ isomerization in alkylidene complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(=\mathrm{CHR})\right]^{+} \mathrm{PF}_{6}{ }^{-}\left(\mathrm{R}=\mathrm{CH}_{3},{ }^{22 \mathrm{~b}}\right.$ $\mathrm{C}_{6} \mathrm{H}_{5}:{ }^{22 \mathrm{a}} K_{\mathrm{eq}}=9.0 \pm 1.0, \geq 99$ are, however, considerably greater than those for $a c \rightleftarrows s c \mathrm{Re}=\mathrm{C}=\mathrm{C}$ isomerization in Table X . This can be attributed to the larger metal $/=\mathrm{CRR}^{\prime}$ separation in vinylidene complexes. Also, photolysis of ac/sc equilibrium mixtures of alkylidene complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)(=\mathrm{CHR})\right]^{+}$. $\mathrm{PF}_{6}{ }^{-}\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3},{ }^{38} \mathrm{C}_{6} \mathrm{H}_{5}\right.$, ${ }^{22 \mathrm{a}}$ mesityl ${ }^{22 \mathrm{c}}$) gives, as with vinylidene complexes $3 \mathrm{c}-\mathrm{dCF}_{3} \mathrm{SO}_{3}{ }^{-}$, ca. $50: 50 \mathrm{sc} / \mathrm{ac}$ photostationary states. This suggests similar initial metal-to-ligand charge-transfer (MLCT) transitions to give excited states with formal $\mathrm{Re}-\mathrm{C}_{\alpha}$ single bonds. ${ }^{39}$

[^5]Table VI. Spectroscopic Characterization of Rhenium Acetylide Complexes

complex	$1 \mathrm{R}^{a}\left(\mathrm{~cm}^{-1}\right)$	${ }^{1} \mathrm{H} N \mathrm{NR}{ }^{6}$ (δ)	${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (ppm)	${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}^{d}$ NMR (ppm)
	$\begin{aligned} & \nu_{\mathrm{N} \equiv \mathrm{O}} 1654(\mathrm{~s}) \\ & \nu_{\mathrm{C}=\mathrm{C}} 1947(\mathrm{w}) \\ & \nu_{\mathrm{mCH}} 3282(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & 7.60-7.30\left(\mathrm{~m}, 3 \mathrm{C}_{6} \mathrm{H}_{5}\right) \\ & 5.11\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) \\ & 2.53\left(\mathrm{~d},{ }^{4} J_{\mathrm{HP}}=2.4, \equiv \mathrm{CH}\right) \end{aligned}$	$\begin{aligned} & 111.7\left(\mathrm{~s}, \mathrm{C}_{\beta}\right) \\ & 90.4\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) \\ & 84.5\left(\mathrm{~d}, J=15.4, \mathrm{C}_{\alpha}\right) \\ & \mathrm{PPh}_{3} \mathrm{at}: \\ & 135.3(\mathrm{~d}, J=60.0, i) \\ & 133.7(\mathrm{~d}, J=8.8, o) \\ & 130.3(\mathrm{~s}, p) \\ & 128.1(\mathrm{~d}, J=8.0, \mathrm{~m}) \end{aligned}$	18.9 (s)
 6b	$\begin{aligned} & \nu_{\mathrm{N}}=1650(\mathrm{~s}) \\ & \nu_{\mathrm{C}=\mathrm{C}} 2113(\mathrm{w}) \end{aligned}$	$\begin{aligned} & 7.72-7.38\left(\mathrm{~m}, 3 \mathrm{C}_{6} \mathrm{H}_{5}\right) \\ & 5.13\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) \\ & 2.05\left(\mathrm{~d},{ }^{5} \mathrm{~J}_{\mathrm{HP}}=3.0, \mathrm{CH}_{3}\right) \end{aligned}$	$\begin{aligned} & 120.7\left(\mathrm{~s}, \mathrm{C}_{\beta}\right) \\ & 90.1\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) \\ & 71.7\left(\mathrm{~d}, J=17.0, \mathrm{C}_{\alpha}\right) \\ & 6.5\left(\mathrm{~s}, \mathrm{CH}_{3}\right) \\ & \mathrm{PPh}_{3} \mathrm{at}: \\ & 135.6(\mathrm{~d}, J=55.0, i) \\ & 133.9(\mathrm{~d}, J=14.6, o) \\ & 130.1(\mathrm{~d}, p) \\ & 128.4(\mathrm{~d}, J=12.2, \mathrm{~m}) \end{aligned}$	20.2 (s)
 6 c	$\begin{aligned} & \nu_{\mathrm{N}}=01652(\mathrm{~s}) \\ & \nu_{\mathrm{C}}=\mathrm{C} 2082(\mathrm{w}) \end{aligned}$	$\begin{aligned} & 7.60-7.12\left(\mathrm{~m}, 3 \mathrm{C}_{6} \mathrm{H}_{5}\right) \\ & 6.92-6.71\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{H}_{5}\right) \\ & 5.24\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) \end{aligned}$	$\begin{aligned} & 122.8\left(\mathrm{~s}, \mathrm{C}_{\beta}\right) \\ & 92.3\left(\mathrm{~d}, J=22.1, \mathrm{C}_{\alpha}\right) \\ & 90.6\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) \end{aligned}$ CPh at: 136.7 (s, i) 131.0 (s, o) 127.4 (s, m) 124.6 (s, p) PPh_{3} at: $\begin{aligned} & 135.5(\mathrm{~d}, J=52.6, i) \\ & 133.8(\mathrm{~d}, J=10.6, o) \\ & 130.2(\mathrm{~s}, p) \\ & 128.3(\mathrm{~d}, J=10.8, m) \end{aligned}$	19.1 (s)
 6d	$\begin{aligned} & \nu_{\mathrm{N}}=01657(\mathrm{~s}) \\ & \nu_{\mathrm{C}}=\mathrm{C} 2067(\mathrm{w}) \end{aligned}$	$\begin{aligned} & 8.00\left(\mathrm{~m}, 1 \mathrm{H} \text { of } \mathrm{C}_{10} \mathrm{H}_{7}\right) \\ & 7.70\left(\mathrm{~m}, 1 \mathrm{H} \text { of } \mathrm{C}_{10} \mathrm{H}_{7}\right) \\ & 7.64-7.22\left(\mathrm{~m}, 3 \mathrm{C}_{6} \mathrm{H}_{5}\right. \\ & \left.4 \mathrm{H} \text { of } \mathrm{C}_{10} \mathrm{H}_{7}\right) \\ & 6.96\left(\mathrm{~m}, 1 \mathrm{H} \text { of } \mathrm{C}_{10} \mathrm{H}_{7}\right) \\ & 5.29\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right) \end{aligned}$	124.2 ($\mathrm{s}, \mathrm{C}_{\beta}$) 98.3 (d, $J=17.0, \mathrm{C}_{\alpha}$) $90.6\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$ $\mathrm{C}_{10} \mathrm{H}_{7}$ at: 133.0 (s), 132.8 (s) 127.9 (s), 127.4 (s) 127.0 (s), 125.8 (s) 125.2 (s), 125.1 (s) $125.0(\mathrm{~s}), 124.9$ (s) PPh_{3} at: $135.3(\mathrm{~d}, J=52.8, i)$ $133.5(\mathrm{~d}, J=9.8, o)$ $130.0(\mathrm{~d}, J=2.5, p)$ $128.1(\mathrm{~d}, J=11.0, \mathrm{~m})$	18.8 (s)

${ }^{a}$ Thin film. ${ }^{b 1} \mathrm{H}$ NMR spectra were recorded at 300 MHz in CDCl_{3} at ambient probe temperature and were referenced to internal ($\left.\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$. All couplings are in $\mathrm{Hz} .{ }^{c 13} \mathrm{C}$ NMR spectra were recorded at 50 or 75 MHz in CDCl_{3} at ambient probe temperature and were referenced to internal $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$. All couplings are in Hz and are to ${ }^{31} \mathrm{P}$. Assignments of ipso (i), para (p), meta (m), and ortho (o) carbon resonances were made as described in footnote c of Table 1 in the following: Buhro, W. E.; Georgiou, S.; Fernändez, J. M.; Patton, A. T.; Strouse, C. E.; Gladysz, J. A. Organometallics 1986, 5, 956. ${ }^{d 31} \mathrm{P}$ NMR spectra were recorded at 32 MHz in CDCl_{3} at ambient probe temperature with an external lock and were referenced to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$.

Several results from other laboratories are particularly relevant to our data. First, Consiglio has recently observed $\mathrm{M}=\mathrm{C}=\mathrm{C}$ isomerism in iron and ruthenium vinylidene complexes [$\left(\eta^{5}\right.$. $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{M}(\mathrm{L})_{2}(=\mathrm{C}=\mathrm{CHR})\right]^{+} \mathrm{PF}_{6}{ }^{-} \quad(\mathrm{L}=1 / 2$ chiral diphosphine). ${ }^{\text {apa, }, \text { d }}$ Depending upon substituents, $K_{\text {eq }}$ range from 1.0 to ≥ 9.0, and dynamic NMR experiments give $\Delta G^{*}=9-10$ $\mathrm{kcal} / \mathrm{mol}$ for $\mathrm{M}=\mathrm{C}=\mathrm{C}$ isomerization. Second, Hughes has placed an upper limit of $\Delta G^{*}{ }_{-100^{\circ} \mathrm{C}}=8-9 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{Fe}=\mathrm{C}=\mathrm{C}$ isomerization in dimethylvinylidene complex $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}\right.$ $\left.(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right]^{+} \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$. ${ }^{\text {b }}$ This compound is analogous to rhenium complex $7 \mathrm{bFSO}_{3}{ }^{-}$, and the iron fragment $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)^{+}$should have a HOMO similar to that of rhenium fragment $\left(\eta^{5} \cdot \mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)^{+}$(see III). ${ }^{30}$ Hence, the electronic component of the $\mathrm{M}=\mathrm{C}=\mathrm{C}$ isomerization barrier is much lower in the iron vinylidene complex.

The osmium fragment $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Os}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)^{+}$is also expected to have a HOMO similar to that shown in III. ${ }^{30}$ However,

[^6]the tert-butylvinylidene ligand in the corresponding complex 12 adopts the $\mathrm{Os}=\mathrm{C}=\mathrm{C}$ conformation shown in Newman projection XIV. The $\mathrm{Ph}_{3} \mathrm{P}-\mathrm{M}-\mathrm{C}_{\beta}-\mathrm{C}$ torsion angle differs from that in $s c-3 \mathrm{dPF}_{6}{ }^{-}$(Figure 2, bottom) by ca. 27°. Geoffroy has suggested that the greater bulk of the pentamethylcyclopentadienyl ligand magnifies steric conformation determining factors. This would direct the tert-butyl substituent toward the smaller CO ligand at the expense of some metal HOMO/ C_{α} p orbital overlap. We agree with this analysis and also predict that low-temperature photolysis of 12 may allow detection of a second $\mathrm{Os}=\mathrm{C}=\mathrm{C}$ isomer.
4. Reactivity of Vinylidene and Acetylide Complexes. Mechanism of Asymmetric Induction. The reaction polarity of vinylidene and acetylide ligands was first systematically studied by Davison and Selegue. ${ }^{3 a, c}$ They found that iron vinylidene and acetylide complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{L})_{2}(\mathrm{X})\right]^{n+}$ exhibit significant C_{α} electrophilicity and C_{β} nucleophilicity, respectively. The related rhenium complexes $3 \mathrm{a}-\mathrm{d} \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$and $\mathbf{6 a - d}$ behave similarly. This reactivity has been probed theoretically by Fenske and Kostićc. ${ }^{23}$ They attribute the vinylidene ligand C_{α} electrophilicity to the LUMO character and localization and the acetylide ligand C_{β}

Table VII. Atomic Coordinates of Non-Hydrogen Atoms in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C} \equiv \mathrm{CCH}_{3}\right)(6 \mathbf{b})$

atom	x	y	z
Re	$-0.66726(4)$	$-0.16493(3)$	$-0.33533(4)$
P 1	$-0.5895(2)$	$-0.2358(1)$	$-0.1356(2)$
O	$-0.3138(7)$	$-0.1150(3)$	$-0.4702(7)$
N	$-0.4538(8)$	$-0.1388(4)$	$-0.4129(8)$
C 1	$-0.5901(10)$	$-0.2813(5)$	$-0.4637(9)$
C 2	$-0.5524(11)$	$-0.3463(5)$	$-0.5441(10)$
C 3	$-0.5072(13)$	$-0.4244(6)$	$-0.6514(12)$
C 11	$-0.9625(11)$	$-0.1032(7)$	$-0.1555(11)$
C 12	$-0.8917(13)$	$-0.0400(6)$	$-0.2342(14)$
C 13	$-0.8568(12)$	$-0.0574(7)$	$-0.3963(13)$
C 14	$-0.9060(14)$	$-0.1307(6)$	$-0.4188(12)$
C 15	$-0.9734(11)$	$-0.1604(6)$	$-0.2687(14)$
C 21	$-0.3885(10)$	$-0.3259(5)$	$-0.2023(9)$
C 22	$-0.3921(11)$	$-0.4031(5)$	$-0.1399(11)$
C 23	$-0.2335(12)$	$-0.4679(5)$	$-0.1908(12)$
C 24	$-0.0702(12)$	$-0.4554(6)$	$-0.3032(11)$
C 25	$-0.0653(11)$	$-0.3793(6)$	$-0.3633(10)$
C 26	$-0.2245(11)$	$-0.3146(5)$	$-0.3152(9)$
C 31	$-0.5414(9)$	$-0.1703(5)$	$0.0035(8)$
C 32	$-0.6395(11)$	$-0.0880(5)$	$0.0490(10)$
C 33	$-0.6160(12)$	$-0.0380(5)$	$0.1631(11)$
C 34	$-0.4911(10)$	$-0.0707(5)$	$0.2300(9)$
C 35	$-0.3911(11)$	$-0.1520(5)$	$0.1845(10)$
C 36	$-0.4144(11)$	$-0.2032(5)$	$0.0707(10)$
C41	$-0.7761(10)$	$-0.2779(5)$	$-0.0021(9)$
C42	$-0.8532(10)$	$-0.3298(5)$	$-0.0685(10)$
C43	$-1.0003(11)$	$-0.3595(5)$	$0.0309(11)$
C44	$-1.0728(11)$	$-0.3358(5)$	$0.1948(11)$
C45	$-0.9953(12)$	$-0.2858(6)$	$0.2589(11)$
C46	$-0.8457(11)$	$-0.2566(5)$	$0.1612(10)$

Table VIII. Bond Distances in 6b (\AA)

$\mathrm{Re}-\mathrm{C} 1$	$2.066(7)$	$\mathrm{C} 22-\mathrm{C} 23$	$1.388(11)$
$\mathrm{Cl}-\mathrm{C} 2$	$1.192(11)$	$\mathrm{C} 23-\mathrm{C} 24$	$1.401(13)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.484(12)$	$\mathrm{C} 24-\mathrm{C} 25$	$1.380(13)$
$\mathrm{Re}-\mathrm{N}$	$1.758(6)$	$\mathrm{C} 25-\mathrm{C} 26$	$1.391(11)$
$\mathrm{N}-\mathrm{O}$	$1.212(8)$	$\mathrm{P} 1-\mathrm{C} 31$	$1.837(7)$
$\mathrm{Re}-\mathrm{C} 11$	$2.313(8)$	$\mathrm{C} 31-\mathrm{C} 32$	$1.373(10)$
$\mathrm{Re}-\mathrm{C} 12$	$2.319(9)$	$\mathrm{C} 31-\mathrm{C} 36$	$1.394(10)$
$\mathrm{Re}-\mathrm{C} 13$	$2.299(8)$	$\mathrm{C} 32-\mathrm{C} 33$	$1.398(11)$
$\mathrm{Re}-\mathrm{C} 14$	$2.293(10)$	$\mathrm{C} 33-\mathrm{C} 34$	$1.377(11)$
$\mathrm{Re}-\mathrm{C} 15$	$2.300(8)$	$\mathrm{C} 34-\mathrm{C} 35$	$1.363(11)$
$\mathrm{C} 11-\mathrm{C} 12$	$1.383(15)$	$\mathrm{C} 35-\mathrm{C} 36$	$1.407(11)$
$\mathrm{C} 11-\mathrm{C} 15$	$1.413(14)$	$\mathrm{P} 1-\mathrm{C} 41$	$1.836(7)$
$\mathrm{C} 12-\mathrm{C} 13$	$1.404(16)$	$\mathrm{C} 41-\mathrm{C} 46$	$1.385(11)$
$\mathrm{C} 13-\mathrm{C} 14$	$1.378(15)$	$\mathrm{C} 41-\mathrm{C} 42$	$1.398(11)$
$\mathrm{C} 14-\mathrm{C} 15$	$1.415(15)$	$\mathrm{C} 42-\mathrm{C} 43$	$1.396(11)$
$\mathrm{Re}-\mathrm{Pl} 1$	$2.362(2)$	$\mathrm{C} 43-\mathrm{C} 44$	$1.395(13)$
$\mathrm{P} 1-\mathrm{C} 21$	$1.835(7)$	$\mathrm{C} 44-\mathrm{C} 45$	$1.367(13)$
$\mathrm{C} 21-\mathrm{C} 26$	$1.399(11)$	$\mathrm{C} 45-\mathrm{C} 46$	$1.400(12)$
$\mathrm{C} 21-\mathrm{C} 22$	$1.403(11)$		

Table IX. Bond Angles in 6b (deg)

$\mathrm{N}-\mathrm{Re}-\mathrm{P} 1$	$92.5(2)$	$\mathrm{Re}-\mathrm{P} 1-\mathrm{C} 31$	$115.1(2)$
$\mathrm{C} 1-\mathrm{Re}-\mathrm{P} 1$	$87.0(2)$	$\mathrm{P} 1-\mathrm{C} 31-\mathrm{C} 32$	$119.3(5)$
$\mathrm{Cl}-\mathrm{Re}-\mathrm{N}$	$97.7(3)$	$\mathrm{P} 1-\mathrm{C} 31-\mathrm{C} 36$	$121.6(6)$
$\mathrm{Re}-\mathrm{C} 1-\mathrm{C} 2$	$175.8(7)$	$\mathrm{C} 32-\mathrm{C} 31-\mathrm{C} 36$	$119.0(7)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$176.8(9)$	$\mathrm{C} 31-\mathrm{C} 32-\mathrm{C} 33$	$121.0(7)$
$\mathrm{Re}-\mathrm{N}-\mathrm{O}$	$175.0(6)$	$\mathrm{C} 34-\mathrm{C} 33-\mathrm{C} 32$	$120.0(7)$
$\mathrm{C} 1-\mathrm{Re}-\mathrm{C} 14$	$88.0(3)$	$\mathrm{C} 35-\mathrm{C} 34-\mathrm{C} 33$	$119.7(7)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 15$	$108.0(9)$	$\mathrm{C} 34-\mathrm{C} 35-\mathrm{C} 36$	$120.9(7)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$108.0(9)$	$\mathrm{C} 31-\mathrm{C} 36-\mathrm{C} 35$	$119.4(7)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$	$109.0(8)$	$\mathrm{Re}-\mathrm{P} 1-\mathrm{C} 41$	$112.9(2)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$107.6(9)$	$\mathrm{P} 1-\mathrm{C} 41-\mathrm{C} 46$	$121.4(6)$
$\mathrm{C} 11-\mathrm{C} 15-\mathrm{C} 14$	$107.4(8)$	$\mathrm{P} 1-\mathrm{C} 41-\mathrm{C} 42$	$118.8(6)$
$\mathrm{Re}-\mathrm{P} 1-\mathrm{C} 21$	$117.6(2)$	$\mathrm{C} 46-\mathrm{C} 41-\mathrm{C} 42$	$119.8(7)$
$\mathrm{P} 1-\mathrm{C} 1-\mathrm{C} 26$	$117.6(6)$	$\mathrm{C} 43-\mathrm{C} 42-\mathrm{C} 41$	$119.6(7)$
$\mathrm{P} 1-\mathrm{C} 21-\mathrm{C} 22$	$122.7(6)$	$\mathrm{C} 44-\mathrm{C} 43-\mathrm{C} 42$	$120.2(8)$
$\mathrm{C} 26-\mathrm{C} 21-\mathrm{C} 22$	$119.7(7)$	$\mathrm{C} 45-\mathrm{C} 44-\mathrm{C} 43$	$119.8(8)$
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{C} 21$	$119.9(8)$	$\mathrm{C} 44-\mathrm{C} 45-\mathrm{C} 46$	$120.7(8)$
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	$119.6(8)$	$\mathrm{C} 41-\mathrm{C} 46-\mathrm{C} 45$	$119.9(8)$
$\mathrm{C} 25-\mathrm{C} 24-\mathrm{C} 23$	$120.7(7)$	$\mathrm{C} 21-\mathrm{P} 1-\mathrm{C} 41$	$104.1(4)$
$\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26$	$120.0(8)$	$\mathrm{C} 21-\mathrm{P} 1-\mathrm{C} 31$	$102.8(3)$
$\mathrm{C} 25-\mathrm{C} 26-\mathrm{C} 21$	$120.0(8)$	$\mathrm{C} 41-\mathrm{P} 1-\mathrm{C} 31$	$102.6(3)$

(a)

(b)

Figure 5. Schematic comparison of the stereochemitstry of (a) electrophilic attack upon acetylide complexes 6b-d (Schemes 11-111) with (b) that of interconverting propargyl and allenic systems.
nucleophilicity to charge distribution (eq 1). Also, the $\mathrm{p} K_{\mathrm{b}}$ of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{dppe})\left(\mathrm{C} \equiv \mathrm{CCH}_{3}\right)$ is ca. $6.26\left(2: 1 \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}\right),{ }^{3 \mathrm{a}}$ which shows that acetylide complexes can be moderately strong bases.

The stereospecificity observed in the reactions of acetylide complexes $\mathbf{6 b - d}$ with electrophiles is easily rationalized. First, note the four acetylide $\mathrm{C}_{B} \mathrm{p}$ orbital lobes labeled $a-d$ in Newman projection VII (Scheme II). Two of these (c, d) are orthogonal to the rhenium fragment HOMO (see III) and thus should be less reactive toward electrophiles. Of the remaining two (a, b) we had expected that a, which is anti to the bulky PPh_{3} ligand, would be more reactive toward electrophiles. Schemes II and III clearly show this to be the case. However, the high stereoselectivity observed, $(98 \pm 2):(2 \pm 2)$ or greater, is to us surprising. Hence, the chiral rhenium substituent confers a high degree of reaction asymmetry upon a $\mathrm{C} \equiv \mathrm{C}$ triple bond.

Electrophilic attack upon the acetylide ligand generates a new C_{β} stereogenic ${ }^{40}$ unit, as shown schematically in Figure 5a. This type of 1,3 -asymmetric induction requires an acetylide substituent atom that can increase its valence number past four and is to our knowledge without precedent. There is a conceptual relationship to previously observed stereospecific interconversions of propargyl and allenic systems (Figure 5b). ${ }^{41}$ However, here one stereogenic unit is simply converted to another. ${ }^{42}$

The stereospecific C_{α} addition of nucleophiles to vinylidene complexes $a c$ - and $s c-3 \mathrm{bCF}_{3} \mathrm{SO}_{3}^{-}$(Scheme IV) from a direction anti to the PPh_{3} ligand has precedent in reactions of the corresponding alkylidene complexes. ${ }^{22}$ In contrast to the electrophile additions discussed above, there are two stereogenic units in both the reactants and products. Interestingly, Reger has previously reported the stereoselective addition of a methyl cuprate reagent to iron methyl phenyl vinylidene complex [$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})$ $\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right]^{+} \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$. ${ }^{12 f}$ This compound is analogous to $7 \mathrm{cFSO}_{3}{ }^{-}$and hence should exist predominantly as a $s c \mathrm{Fe}=\mathrm{C}=\mathrm{C}$ isomer (XII, Scheme III). Transition-state model XIII (Scheme IV) then predicts that the new C_{α} methyl group should be introduced cis to the C_{β} phenyl group to give an $E \mathrm{C}=\mathrm{C}$ isomer. However, Reger reports the predominant (93:7) formation of the less stable Z isomer, with the C_{α} and C_{β} methyl groups cis This is likely due to the facile interconversion of $\mathrm{Fe}=\mathrm{C}=\mathrm{C}$ isomers (see above), and a less hindered nucleophile C_{α} approach (syn to C_{β} methyl) in the less stable $a c$ isomer. Related phenomena have recently been documented by Brookhart with C_{α} nucleophilic attack upon the corresponding iron alkylidene complexes. ${ }^{43}$

[^7]Table X. Summary of Rate Constants and Equilibrium and Activation Parameters for $\mathrm{Re}=\mathrm{C}=\mathrm{C}$ Isomerization in Vinylidene Complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{C}=\mathrm{CRR}^{\prime}\right)^{+} \mathrm{X}^{-}\right.$
A. Rate Constants $\left(k_{1}\right)$ for $a c \rightarrow s c \mathrm{Re}=\mathrm{C}=\mathrm{C}$ 1somerization ${ }^{a}$

${ }^{a}$ The forward rate constant, k_{1}, was obtained by plotting $\log \left([s c]_{\text {equil }}-[s c]_{1}\right)$ versus time. The variable k_{-1} was estimated from the slope, $-0.4343\left(k_{1}+k_{-1}\right)$, by substituting k_{1} / K : Capellos, C.; Bielski, B. H. J. Kinetic Systems; Wiley: New York, 1972; Chapter 8. ${ }^{b}$ Recalculated from the raw data for ref 25 . ${ }^{c}$ For the forward reaction $\left(k_{1}\right)$.
5. Summary. This study establishes that chiral rhenium acetylide and vinylidene complexes $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\right.$ $(\mathrm{X})]^{n+}$ exhibit a wealth of novel structural and chemical properties. In particular, the 1,3-asymmetric induction observed in C_{β} electrophilic attack upon acetylide complexes $\mathbf{6 b - d}$ appears without precedent. This study also provides the first quantitative rate and equilibrium data for the interconversion of $\mathrm{M}=\mathrm{C}$ and $\mathrm{M}=\mathrm{C}=\mathrm{C}$ isomers of corresponding alkylidene and vinylidene complexes. Finally, the scope of the $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)$ moiety as a unique stereogenic transmitter has been further extended, ${ }^{44}$ and additional applications of this capability are under active pursuit.

Experimental Section

General Methods. General procedures have been described in a recent paper. ${ }^{24}$ Additional reagents employed were as follows: $\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{O}$ (Aldrich), distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$, freeze-pump-thaw degassed three times, distilled under vacuum, and stored at $-20^{\circ} \mathrm{C}$ in an inert atmosphere glovebox; $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ (Aldrich), distilled before use; $\mathrm{HPF}_{6} \cdot \mathrm{Et}_{2} \mathrm{O}$, $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ (Columbia), $\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}^{+} \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$(Alfa), and $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$ (Strem), used as received; TMP (Aldrich), ${ }^{27 d}$ distilled from CaH_{2}. UV/vis spectra were recorded on a Perkin-Elmer 552A spectrophotometer.

Preparation of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{COCH}_{2}\left(\mathbf{1}-\mathrm{C}_{10} \mathrm{H}_{7}\right)\right)(2 \mathrm{~d})$. A Schlenk flask was charged with $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ $(0.720 \mathrm{~g}, 1.19 \mathrm{mmol})^{26}$ and a stir bar and cooled to $-78^{\circ} \mathrm{C}$. Then a -78 ${ }^{\circ} \mathrm{C}$ solution of $\left(1-\mathrm{C}_{10} \mathrm{H}_{7}\right) \mathrm{CH}_{2} \mathrm{MgCl}$ (freshly prepared from ($1-\mathrm{C}_{10} \mathrm{H}_{7}$) C$\mathrm{H}_{2} \mathrm{Cl}(1.22 \mathrm{~g}, 6.94 \mathrm{mmol})$, toluene $(30 \mathrm{~mL})$, and a large excess of mag. nesium strips) in ether (20 mL) was slowly added via cannula with stirring. The reaction was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and was then slowly warmed to room temperature. Solvent was removed by rotary evaporation, and the resulting yellow residue was extracted with acetone. The extract was filtered through a medium porosity fritted funnel, and solvent was removed from the filtrate by rotary evaporation. The residue was extracted with a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the extract was deposited on a dry $5-\mathrm{cm}$ column of silica gel. The column was eluted with 90:10 (v/v) hexane/ethyl acetate, and the eluent was concentrated by rotary evaporation. A yellow powder precipitated, which was collected by filtration and washed with cold ether ($2 \times 10 \mathrm{~mL}$) to give $\mathbf{2 d}(0.519 \mathrm{~g}, 0.728$ mmol). The washings were concentrated and stored at $-20^{\circ} \mathrm{C}$ overnight to give a second $\operatorname{crop}(0.124 \mathrm{~g}, 0.174 \mathrm{mmol}, 76 \%$ total yield) of $\mathbf{2 d}$. The

[^8]crops were combined and recrystallized from ether to give golden prisms of $2 \mathrm{~d}(0.434 \mathrm{~g}, 0.609 \mathrm{mmol}, 51 \%), \mathrm{mp} 195^{\circ} \mathrm{C}$ dec: $1 \mathrm{R}\left(\mathrm{cm}^{-1}\right.$, thin film $)$ $\nu_{\mathrm{N}=0} 1640 \mathrm{~s}, \nu_{\mathrm{C}}^{\mathrm{C}}=1543 \mathrm{~s},{ }^{1} \mathrm{H} \operatorname{NMR}\left(\delta, \mathrm{CDCl}_{3}\right) 7.93-7.00\left(\mathrm{~m}, 3 \mathrm{C}_{6} \mathrm{H}_{5}\right.$, $\left.\mathrm{C}_{10} \mathrm{H}_{7}\right), 5.02\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.71\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=14.5 \mathrm{~Hz}, \mathrm{CH} \mathrm{H}^{\prime}\right), 3.52\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}\right.$ $=14.5 \mathrm{~Hz}, \mathrm{CHH}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{ppm}, \mathrm{CDCl}_{3}\right) 249.3\left(\mathrm{~d}, J_{\mathrm{CP}}=9.0 \mathrm{~Hz}\right.$, $\mathrm{C}=\mathrm{O}), \mathrm{PPh}_{3}$ at $135.4\left(\mathrm{~d}, J_{\mathrm{CP}}=55.1 \mathrm{~Hz}, i\right), 133.3\left(\mathrm{~d}, J_{\mathrm{CP}}=10.5 \mathrm{~Hz}\right.$, $o), 130.1(\mathrm{~s}, p), 128.2\left(\mathrm{~d}, J_{\mathrm{CP}}=10.7 \mathrm{~Hz}, m\right), \mathrm{C}_{10} \mathrm{H}_{7}$ at (s, one resonance obscured) $135.1,132.4,127.9,127.7,125.8,125.5,125.1,124.9,124.7$, $92.2\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 66.8\left(\mathrm{~s}, \mathrm{CH}_{2}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (ppm, CDCl_{3}) $16.2(\mathrm{~s}) ;$ mass spectrum $((+)-\mathrm{FAB}(7 \mathrm{kV}, \mathrm{Ar}, 3$-nitrobenzyl alcohol), m / z (rel intensity), $\left.{ }^{187} \mathrm{Re}\right) 714\left(\mathrm{M}^{+}, 2\right), 572\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{C}_{10} \mathrm{H}_{7}, 100\right), 544\left(\mathrm{M}^{+}-\right.$ $\mathrm{COCH}_{2} \mathrm{C}_{10} \mathrm{H}_{7}, 25$). Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{29} \mathrm{NO}_{2}$ PRe: $\mathrm{C}, 58.98 ; \mathrm{H}, 4.10$. Found: C, 58.76; H, 4.14.

Preparation of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{C}=\mathrm{CH}_{2}\right)\right]^{+} \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$ $\left(\mathbf{3 a C F}_{3} \mathrm{SO}_{3}^{-}\right)$. A Schlenk flask was charged with $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})$ $\left(\mathrm{PPh}_{3}\right)\left(\mathrm{COCH}_{3}\right)(2 \mathrm{a}, 0.600 \mathrm{~g}, 1.02 \mathrm{mmol}$; crystalline material recommended) ${ }^{26} \mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}$), and a stir bar (note: rigorous inert atmosphere techniques are essential throughout this procedure). The solution was cooled to $-78{ }^{\circ} \mathrm{C}$, and $\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{O}(87.0 \mu \mathrm{~L}, 0.518 \mathrm{mmol})$ was added with stirring. After 10 min, TMP $^{27 \mathrm{~d}}(172 \mu \mathrm{~L}, 1.02 \mathrm{mmol})$ was added. Stirring was continued for an additional hour at $-78^{\circ} \mathrm{C}$, and then $\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{O}(87.0 \mu \mathrm{~L}, 0.518 \mathrm{mmol})$ was added. After 10 min , the solution was warmed to room temperature and filtered through a medium porosity fritted funnel. Solvent was removed from the filtrate by rotary evaporation, and the resulting orange solid was extracted with CHCl_{3}. The extract was filtered, and solvent was removed from the filtrate by rotary evaporation. This gave $3 \mathrm{aCF}_{3} \mathrm{SO}_{3}{ }^{-}(0.650 \mathrm{~g}, 0.904 \mathrm{mmol}, 88 \%)$ as a burnt orange foam, mp 191-194 ${ }^{\circ} \mathrm{C}$ dec: mass spectrum $((+) \cdot \mathrm{FAB}$ ($7 \mathrm{kV}, \mathrm{Ar}, 3$-nitrobenzyl alcohol), m / z (rel intensity), ${ }^{187} \mathrm{Re}$) $570\left(\mathrm{M}^{+}\right.$, $100), 544\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{2}, 23\right), 467\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{2}-\mathrm{C}_{6} \mathrm{H}_{5}, 5\right), 262\left(\mathrm{Ph}_{3} \mathrm{P}^{+}, 8\right)$.

Preparation of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathbf{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{C}=\mathrm{CHCH}_{3}\right)^{+} \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\right.$ $\left(3 \mathrm{bCF}_{3} \mathrm{SO}_{3}^{-}\right)$, A Schlenk flask was charged with $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})$ $\left(\mathrm{PPh}_{3}\right)\left(\mathrm{COCH}_{2} \mathrm{CH}_{3}\right)(\mathbf{2 b}, 0.306 \mathrm{~g}, 0.510 \mathrm{mmol}){ }^{26} \mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$, and a stir bar. The solution was cooled to $-78^{\circ} \mathrm{C}$, and $\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{O}(42.9$ $\mu \mathrm{L}, 0.255 \mathrm{mmol}$) was added with stirring. After $10 \mathrm{~min}, \mathrm{TMP}(86.1 \mu \mathrm{~L}$, 0.510 mmol) was added. The reaction was allowed to warm to $0^{\circ} \mathrm{C}$ and then cooled to $-78^{\circ} \mathrm{C}$. Then $\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{O}(42.9 \mu \mathrm{~L}, 0.255 \mathrm{mmol})$ was added. After 10 min , the solution was warmed to room temperature and filtered through a medium porosity fritted funnel. Solvent was removed from the filtrate by rotary evaporation to give crude $\mathbf{3 b C F} \mathrm{SO}_{3}{ }^{-}(0.337$ $\mathrm{g}, 0.460 \mathrm{mmol}, 90 \%$) as a light brown powder. The powder was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the resulting solution was layered with ether. Honey yellow needles of $3 \mathrm{bCF}_{3} \mathrm{SO}_{3}^{-}$formed, which were collected by filtration and dried in vacuo ($0.292 \mathrm{~g}, 0.398 \mathrm{mmol}, 78 \%$), $\mathrm{mp} 152-155^{\circ} \mathrm{C}$ dec. This material was a $(95 \pm 2):(5 \pm 2)$ mixture of $s c / a c$ isomers, as assayed by low-temperature ${ }^{1} \mathrm{H}$ NMR: mass spectrum $((+)-\mathrm{FAB}(7 \mathrm{kV}, \mathrm{Ar}$, 3-nitrobenzyl alcohol), m / z (rel intensity), ${ }^{187} \mathrm{Re}$) $584\left(\mathrm{M}^{+}, 100\right), 544$ $\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{HCH}_{3}, 60\right), 467\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{HCH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}, 4\right), 262\left(\mathrm{Ph}_{3} \mathrm{P}^{+}, 6\right)$; UV ($\mathrm{nm}(\epsilon), 3.36 \times 10^{-5} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 256 sh (9100), 267 sh (7500), 272 sh (6000), 280 sh (4100), 312 sh (2200). Anal. Calcd for
$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{PSRe}: \mathrm{C}, 44.25 ; \mathrm{H}, 3.27 ; \mathrm{N}, 1.91 ; \mathrm{P}, 4.23$. Found: C , 44.72 ; H, 3.42; N, $1.88 ; \mathrm{P}, 4.27$

Preparation of sc $\cdot\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{C}=\mathrm{CHC}_{6} \mathrm{H}_{5}\right)\right]^{+}$$\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$(sc-3 $\mathrm{cCF}_{3} \mathrm{SO}_{3}{ }^{-}$). This compound was prepared by a procedure identical with that given for $3 \mathrm{bCF}_{3} \mathrm{SO}_{3}^{-}$, utilizing the following materials and quantities: $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{COCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)(2 \mathrm{c}, 0.389 \mathrm{~g}$, $0.588 \mathrm{mmol}){ }^{26} \mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL}),\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{O}(49.5 \mu \mathrm{~L}, 0.294 \mathrm{mmol})$, TMP $(99.2 \mu \mathrm{~L}, 0.588 \mathrm{mmol}),\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{O}(49.5 \mu \mathrm{~L}, 0.294 \mathrm{mmol})$. Crude $3 \mathrm{cCF}_{3} \mathrm{SO}_{3}{ }^{-}$was obtained as a golden powder ($0.390 \mathrm{~g}, 0.491$ mmol, 84%) which was recrystallized from layered $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ether. This gave golden needles of $3 \mathrm{cCF}_{3} \mathrm{SO}_{3}{ }^{-}(0.303 \mathrm{~g}, 0.382 \mathrm{mmol}, 65 \%), \mathrm{mp}$ $205-208^{\circ} \mathrm{C}$ dec. This material was a $>99: 1$ mixture of $s c / a c$ isomers, as assayed by low-temperature ${ }^{1} \mathrm{H}$ NMR: mass spectrum ($(+$)-FAB (7 $\mathrm{kV}, \mathrm{Ar}, 3$-nitrobenzyl alcohol), m / z (rel intensity), ${ }^{187} \mathrm{Re}$) 646 ($\mathrm{M}^{+}, 100$), $544\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{HC}_{6} \mathrm{H}_{5}, 63\right)$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{4}$ PSRe: C, 48.35; H, 3.27; N, 1.76; P, 3.90. Found: C, 48.03; H, 3.40; N, 1.75; P, 3.98

Preparation of $\boldsymbol{s c}-\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathbf{P P h}_{3}\right)\left(=\mathrm{C}=\mathbf{C H}\left(1-\mathrm{C}_{10} \mathbf{H}_{7}\right)\right)\right]^{+}$$\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$(sc-3dCF SO_{3}^{-}). This compound was prepared by a procedure identical with that given for $3 \mathrm{bCF}_{3} \mathrm{SO}_{3}^{-}$, utilizing the following materials and quantities: $2 \mathrm{~d}(0.179 \mathrm{~g}, 0.252 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}),\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{O}$ $(21.5 \mu \mathrm{~L}, 0.128 \mathrm{mmol}), \mathrm{TMP}(42.5 \mu \mathrm{~L}, 0.252 \mathrm{mmol}),\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{O}(21.5$ $\mu \mathrm{L}, 0.128 \mathrm{mmol}$). Crude $3 \mathrm{dCF}_{3} \mathrm{SO}_{3}{ }^{-}$was obtained as a dark yellow residue that was extracted with a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Then ether (20 mL) and hexanes (20 mL) were added to the extract. Solvent was removed by rotary evaporation to give $3 \mathrm{dCF}_{3} \mathrm{SO}_{3}{ }^{-}$as a honey brown powder ($0.203 \mathrm{~g}, 0.240 \mathrm{mmol}, 95 \%$), which was crystallized from layered $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes. This gave small yellow prisms of $s c-3 \mathrm{dCF}_{3} \mathrm{SO}_{3}{ }^{-}(0.135$ g, $0.160 \mathrm{mmol}, 63 \%$) $\mathrm{mp} 218-220^{\circ} \mathrm{C}$ dec. This material was a $>99: 1$ mixture of $s c / a c$ isomers, as assayed by low-temperature ${ }^{1} \mathrm{H}$ NMR: mass spectrum $((+)$ FAB ($7 \mathrm{kV}, \mathrm{Ar}, 3$-nitrobenzyl alcohol), m / z (rel intensity), $\left.{ }^{187} \mathrm{Re}\right) 696\left(\mathrm{M}^{+}, 71\right), 572\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{HC}_{10} \mathrm{H}_{7}+\mathrm{CO}, 29\right), 544\left(\mathrm{M}^{+}\right.$ $-\mathrm{C}_{2} \mathrm{HC}_{10} \mathrm{H}_{7}, 100$); UV ($\mathrm{nm}(\epsilon) 2.04 \times 10^{-5} \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 260 (33000), 275 sh (27000), 300 sh (16000), 367 (7600). Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NO}_{4}$ PSRe: C, 51.18; H, 3.34. Found: C, 50.92; H, 3.40.

Preparation of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathbf{P P h}_{3}\right)(\mathrm{C}=\mathrm{CH})$ (6a). A Schlenk flask was charged with $3 \mathrm{aCF}_{3} \mathrm{SO}_{3}{ }^{-}(0.173 \mathrm{~g}, 0.241 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL), and a stir bar. The solution was cooled to $-78^{\circ} \mathrm{C}$, and TMP ${ }^{27 \mathrm{~d}}$ $(41.0 \mu \mathrm{~L}, 0.243 \mathrm{mmol})$ was added with stirring. After 10 min , the mixture was warmed to room temperature and filtered. Solvent was removed from the filtrate by rotary evaporation. The resulting red residue was extracted with THF, and the extract was filtered through a $5-\mathrm{cm}$ plug of silica gel that had been base washed, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ washed, and oven-dried. Solvent was removed from the filtrate by rotary evaporation, and the residue was extracted with a minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Hexanes were added to slightly past a cloud point, and the mixture was filtered through 3 cm of Celite on a medium porosity fritted funnel. The Celite was washed with ether ($3 \times 5 \mathrm{~mL}$), and the washings were combined with the filtrate. Solvents were removed by rotary evaporation to give 6a ($0.0726 \mathrm{~g}, 0.128 \mathrm{mmol}, 53 \%$) as an orange powder, $\mathrm{mp} 211-214^{\circ} \mathrm{C} \mathrm{dec}$: mass spectrum (m / z (rel intensity), $17 \mathrm{eV},{ }^{187} \mathrm{Re}$) $569\left(\mathrm{M}^{+}, 63\right), 544\left(\mathrm{M}^{+}\right.$ $\left.-\mathrm{C}_{2} \mathrm{H}, 10\right), 467\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}-\mathrm{C}_{6} \mathrm{H}_{5}, 3\right), 262\left(\mathrm{Ph}_{3} \mathrm{P}^{+}, 100\right)$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{21}$ NOPRe: C, $52.81 ; \mathrm{H}, 3.72$. Found: C, $53.12 ; \mathrm{H}, 3.49$.

Preparation of $\left(\eta^{5}-\mathrm{C}_{5} \mathbf{H}_{5}\right) \mathbf{R e}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C} \equiv \mathrm{CCH}_{3}\right)(6 \mathrm{~b})$. A Schlenk flask was charged with $3 \mathrm{bCF}_{3} \mathrm{SO}_{3}{ }^{-}(0.200 \mathrm{~g}, 0.273 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL), and a stir bar. The solution was cooled to $-78^{\circ} \mathrm{C}$, and TMP (46.0 $\mu \mathrm{L}, 0.273 \mathrm{mmol}$) was added with stirring. The reaction was allowed to warm to room temperature, and solvent was then removed under oil pump vacuum. This gave crude $\mathbf{6 b}$ as an orange solid ($0.140 \mathrm{~g}, 0.240$ $\mathrm{mmol}, 88 \%$). The solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the solution was layered with hexane. This gave red prisms of $\mathbf{6 b}$, which were collected by filtration and dried in vacuo ($0.130 \mathrm{~g}, 0.223 \mathrm{mmol}, 82 \%), \mathrm{mp} 154-158$ ${ }^{\circ} \mathrm{C}$ dec: mass spectrum (m / z (rel intensity), $16 \mathrm{eV},{ }^{187} \mathrm{Re}$) $583\left(\mathrm{M}^{+}\right.$, 100), $467\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{5}, 13\right), 262\left(\mathrm{Ph}_{3} \mathrm{P}^{+}, 40\right)$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{23}$ NOPRe: $\mathrm{C}, 53.59 ; \mathrm{H}, 3.95 ; \mathrm{N}, 2.40 ;$ P, 5.32. Found: C, 53.43; H, 3.89; N, 2.37; P, 5.30.

Preparation of $\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathbf{N O})\left(\mathbf{P P h}_{3}\right)\left(\mathbf{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right)$ (6c). This compound was prepared by a procedure identical with that given for $\mathbf{6 b}$, utilizing $3 \mathrm{CCF}_{3} \mathrm{SO}_{3}{ }^{-}(0.200 \mathrm{~g}, 0.252 \mathrm{mmol})$ and TMP $(42.0 \mu \mathrm{~L}, 0.250$ $\mathrm{mmol})$. Crude $6 \mathbf{c}$ was obtained as an orange powder ($0.150 \mathrm{~g}, 0.233$ $\mathrm{mmol}, 92 \%$), which was recrystallized from layered $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ether. This gave orange needles of 6 c , which were collected by filtration and dried in vacuo ($0.121 \mathrm{~g}, 0.188 \mathrm{mmol}, 75 \%$), $\mathrm{mp} 205-208^{\circ} \mathrm{C}$: mass spectrum $\left(\mathrm{m} / \mathrm{z}\right.$ (rel intensity), $\left.16 \mathrm{eV},{ }^{187} \mathrm{Re}\right) 645\left(\mathrm{M}^{+}, 92\right), 544\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right.$, 15), $467\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C}_{6} \mathrm{H}_{5}, 10\right), 262\left(\mathrm{Ph}_{3} \mathrm{P}^{+}, 100\right)$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{29}$ NOPRe: C, $57.74 ; \mathrm{H}, 3.88 ; \mathrm{N}, 2.17 ;$ P, 4.81. Found: C, 57.08; H, 4.06; N, 2.24; P, 4.61.

Preparation of $\left(\mu^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathbf{P P h}_{3}\right)\left(\mathrm{C} \equiv \mathrm{C}\left(1-\mathrm{C}_{10} \mathrm{H}_{7}\right)\right)(6 \mathrm{~d})$. A Schlenk flask was charged with $3 \mathrm{dCF}_{3} \mathrm{SO}_{3}{ }^{-}(0.245 \mathrm{~g}, 0.290 \mathrm{mmol})$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, and a stir bar. The solution was cooled to $-78^{\circ} \mathrm{C}$, and TMP ($49.0 \mu \mathrm{~L}, 2.90 \mathrm{mmol}$) was added with stirring. After 5 min , the
mixture was warmed to room temperature and then filtered through a medium porosity fritted funnel. Solvent was removed from the filtrate by rotary evaporation. The resulting red powder was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the extract was filtered through a $5-\mathrm{cm}$ plug of silica gel that had been washed with $90: 10(\mathrm{v} / \mathrm{v})$ hexanes $/ \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and dried. Hexanes were added to the filtrate, and solvent was removed by rotary evaporation. This gave $\mathbf{6 d}$ as an orange foam $(0.167 \mathrm{~g}, 0.241$ $\mathrm{mmol}, 83 \%$). The foam was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the solution was layered with hexane. This gave orange needles of $6 \mathbf{d}$ that were collected by filtration and dried in vacuo ($0.144 \mathrm{~g}, 0.208 \mathrm{mmol}, 72 \%$), $\mathrm{mp} 209^{\circ} \mathrm{C}$ dec: mass spectrum (m / z (rel intensity), $17 \mathrm{eV},{ }^{187} \mathrm{Re}$) $695\left(\mathrm{M}^{+}, 100 \%\right.$), $262\left(\mathrm{Ph}_{3} \mathrm{P}^{+}, 13\right)$; UV ($\mathrm{nm}(\epsilon), 2.58 \times 10^{-5} \mathrm{M}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 260(23000)$, $284 \operatorname{sh}(16000), 320(16000), 360 \operatorname{sh}(7900) 398 \operatorname{sh}(2300)$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{27}$ NOPRe: $\mathrm{C}, 60.50 ; \mathrm{H}, 3.92$. Found: $\mathrm{C}, 60.23 ; \mathrm{H}, 4.03$.

Reactions of Acetylide Complexes with $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$. In a typical experiment, a $5-\mathrm{mm}$ NMR tube was charged with $6 b-\mathrm{d}(0.0465 \mathrm{mmol})$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.600 \mathrm{~mL})$ and capped with a septum. The solution was freeze-pump-thaw degassed three times, and a nitrogen atmosphere was admitted. The tube was cooled to $-196^{\circ} \mathrm{C}$, and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(4.50 \mu \mathrm{~L}$, 0.0508 mmol) was added via syringe. The mixture was thawed in a -78 ${ }^{\circ} \mathrm{C}$ bath, shaken, and quickly transferred to a $-80^{\circ} \mathrm{C}$ NMR probe. lmmediate analysis by ${ }^{1} \mathrm{H}$ NMR gave the $a c / s c$ ratios given in the Results section.

Preparation of sc-3dPF ${ }_{6}{ }^{-}$. A Schlenk flask was charged with $\mathbf{6 d}$ $(0.0147 \mathrm{~g}, 0.0212 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, and a stir bar. The solution was cooled to $-78^{\circ} \mathrm{C}$, and then $\mathrm{HPF}_{6} \cdot \mathrm{Et}_{2} \mathrm{O}(0.0047 \mathrm{~g}, 0.021 \mathrm{mmol})$ was added with stirring. After 5 min , the mixture was warmed to room temperature, and solvent was removed under oil pump vacuum. The resulting yellow residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the extract was layered with hexanes. This gave yellow prisms of $s c-3 \mathrm{~d} \mathrm{PF}_{6}$, which were collected by filtration and dried in vacuo ($0.0119 \mathrm{~g}, 0.0142 \mathrm{mmol}, 67 \%$), $\mathrm{mp} 224^{\circ} \mathrm{C}$ dec. The 1 R and NMR (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$) spectra, and lowtemperature isomer purity assay, of $s c-3 \mathrm{dPF}_{6}{ }^{-}$matched those of $s c$ $3 \mathrm{dCF}_{3} \mathrm{SO}_{3}{ }^{-}$. Anal. Caled for $\mathrm{C}_{35} \mathrm{H}_{28} \mathrm{~F}_{6} \mathrm{NOP}_{2} \mathrm{Re}$: $\mathrm{C}, 50.00 ; \mathrm{H}, 3.36$. Found: C, 49.61; H, 3.49.

Preparation of $\left[\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathbf{C}=\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right]^{+} \mathrm{FSO}_{3}{ }^{-}(\mathbf{7 b}$ $\left.\mathbf{F S O}_{3}{ }^{-}\right)$. A Schlenk flask was charged with $\mathbf{6 b}(0.200 \mathrm{~g}, 0.343 \mathrm{mmol})$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~mL}\right.$), and a stir bar. The solution was cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{~F}(47.0 \mu \mathrm{~L}, 0.547 \mathrm{mmol})$ was added with stirring. The mixture was allowed to warm to room temperature over the course of 45 min , then solvent was removed under reduced pressure, and the residue was washed with toluene until the washings were colorless. The remaining golden solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and the solution was layered with ether. Light brown needles of $7 \mathrm{bFSO}{ }_{3}{ }^{-}$formed over the course of 2 days and were collected by filtration and dried in vacuo $(0.190 \mathrm{~g}, 0.273 \mathrm{mmol}$, 80%). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{FNO}_{4}$ PSRe: $\mathrm{C}, 46.54 ; \mathrm{H}, 3.73 ; \mathrm{N}, 2.01$; P, 4.45. Found: C, 45.86; H, 3.82; N, 1.98; P, 4.40.

Preparation of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathbf{R e}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(=\mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right)\right]^{+}$$\mathrm{FSO}_{3}{ }^{-}\left(7 \mathrm{c} \mathrm{FSO}_{3}{ }^{-}\right)$. This compound was prepared by a procedure identical with that given for $7 \mathrm{bFSO}{ }_{3}^{-}$, utilizing $6 \mathrm{c}(0.250 \mathrm{~g}, 0.388 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{~S}$ $\mathrm{O}_{3} \mathrm{~F}(50.0 \mu \mathrm{~L}, 0.582 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The solid remaining after the toluene wash was recrystallized from layered $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ether Brown needles of $7 \mathrm{cFSO}_{3}-$ formed, which were collected by filtration and dried in vacuo ($0.200 \mathrm{~g}, 0.264 \mathrm{mmol}, 68 \%$): IR $\left(\mathrm{cm}^{-1}, \mathrm{CHCl}_{3}\right) \nu_{\mathrm{N}=0}$ $1750 \mathrm{~s}, \nu_{\mathrm{C}}=\mathrm{c} 1652 \mathrm{~m} ;{ }^{1}{ }^{1} \mathrm{H}$ NMR spectrum (room temperature) indicated an ca. 75:25 sc-7cFSO $3^{-} / a c-7 \mathrm{cFSO}{ }_{3}^{-}$ratio ($\delta, \mathrm{CDCl}_{3}$) ac 7.78-7.08 (m, $\left.3 \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.08-6.10\left(\mathrm{~m}, 1 \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.09\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 2.33\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$, sc 7.78-7.08 (m, $\left.4 \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.06\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 1.58\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($\mathrm{ppm}, \mathrm{CDCl}_{3}$) ac $334.2\left(\mathrm{~d}, J_{\mathrm{CP}}=10.0 \mathrm{~Hz}, \mathrm{C}_{\alpha}\right), 141.2\left(\mathrm{~s}, \mathrm{C}_{\beta}\right)$ 132.9-128.1 ($\mathrm{PC}_{6} \mathrm{H}_{5}$ and $\left.\mathrm{CC}_{6} \mathrm{H}_{5}\right), 98.5\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 16.8\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$, sc 330.9 (weak m, C_{α}), $140.0\left(\mathrm{~s}, \mathrm{C}_{\beta}\right), 133.1-125.9\left(\mathrm{~m}, \mathrm{PC}_{6} \mathrm{H}_{5}\right.$ and $\left.\mathrm{CC}_{6} \mathrm{H}_{5}\right), 98.9$ $\left(\mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 10.6\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$; mass spectrum $((+)-\mathrm{FAB}(7 \mathrm{kV}, \mathrm{Ar}, 3$-nitrobenzyl alcohol), m / z (rel intensity), ${ }^{187} \mathrm{Re}$) $660\left(\mathrm{M}^{+}, 100\right), 544\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{C}_{2}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5}, 33\right), 467\left(544-\mathrm{C}_{6} \mathrm{H}_{5}, 7\right), 262\left(\mathrm{Ph}_{3} \mathrm{P}^{+}, 5\right)$.

Preparation of $\left[\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathbf{R e}(\mathbf{N O})\left(\mathbf{P P h}_{3}\right)\left(\mathrm{C}\left(\mathbf{P}\left(\mathrm{CH}_{3}\right)_{3}\right)=\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right]^{+}$$\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\left(8 \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\right)$. A Schlenk flask was charged with $6 \mathrm{~b}(0.0404 \mathrm{~g}$, $0.0693 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and a stir bar. The solution was cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{CH}_{3}(9.40 \mu \mathrm{~L}, 0.829 \mathrm{mmol})$ was added with stirring. The mixture was warmed to room temperature over 45 min , and solvents were removed by rotary evaporation. The resulting brown residue was washed with toluene until the washings were colorless. The residue was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. A $50-\mathrm{mL}$ Schlenk flask was charged with this extract and a stir bar. The mixture was cooled to 0 ${ }^{\circ} \mathrm{C}$, and $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}(10.0 \mu \mathrm{~L}, 0.0983 \mathrm{mmol})$ was added with stiring. After 45 min , solvents were removed under oil pump vaccum. This gave an orange residue that was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was layered with ether. This gave orange needles of $8 \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$, which were collected by filtration and dried in vacuo ($0.0345 \mathrm{~g}, 0.0419 \mathrm{mmol}, 60 \%$), mp 211 ${ }^{\circ} \mathrm{C}: 1 \mathrm{R}\left(\mathrm{cm}^{-1}\right.$, thin film) $\nu_{\mathrm{N}=\mathrm{O}} 1649 \mathrm{~s} ;{ }^{1} \mathrm{H}$ NMR $\left(\delta, \mathrm{CDCl}_{3}\right) 7.50-7.25$ $\left(\mathrm{m}, 3 \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.44\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 2.14\left(\mathrm{~d}, J_{\mathrm{HP}}=2.5 \mathrm{~Hz}, E-\mathrm{CH}_{3}\right), 1.75\left(\mathrm{~d}, J_{\mathrm{HP}}\right.$ $\left.=12.2 \mathrm{~Hz}, 3 \mathrm{PCH}_{3}\right), 1.43\left(\mathrm{~d}, J_{\mathrm{HP}}=1.7 \mathrm{~Hz}, Z \cdot \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$
(ppm, $\left.\mathrm{CDCl}_{3}\right) 161.5\left(\mathrm{~d}, J_{\mathrm{CP}}=6.1 \mathrm{~Hz}, \mathrm{C}_{\beta}\right), 103.4\left(\mathrm{dd},{ }^{1} J_{\mathrm{CP}}=16.6 \mathrm{~Hz}\right.$, $\left.{ }^{2} J_{\mathrm{CP}}=7.6 \mathrm{~Hz}, \mathrm{C}_{\alpha}\right), \mathrm{PPh}_{3}$ at $134.4\left(\mathrm{~d}, J_{\mathrm{CP}}=52.1 \mathrm{~Hz}, i\right), 133.1\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=8.6 \mathrm{~Hz}, o), 130.4(\mathrm{~s}, p), 128.3\left(\mathrm{~d}, J_{\mathrm{CP}}=8.5 \mathrm{~Hz}, m\right), 120.4\left(\mathrm{q}, J_{\mathrm{CF}}=\right.$ $\left.319.4 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 92.1\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 37.4\left(\mathrm{dd},{ }^{3} J_{\mathrm{CP}}=27.1 \mathrm{~Hz},{ }^{4} J_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right.$, $\left.Z-\mathrm{CH}_{3}\right), 27.1\left(\mathrm{~d}, J_{\mathrm{CP}}=16.1 \mathrm{~Hz}, E-\mathrm{CH}_{3}\right), 16.6\left(\mathrm{~d}, J_{\mathrm{CP}}=53.1 \mathrm{~Hz}\right.$, $\left.\mathrm{PCH}_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (ppm, $\left.\mathrm{CDCl}_{3}\right) 23.0\left(\mathrm{~s}, \mathrm{PCH}_{3}\right), 7.5(\mathrm{~s}, \mathrm{PPh})$; mass spectrum $((+)-\mathrm{FAB}(7 \mathrm{kV}, \mathrm{Ar}, 3-$ nitrobenzyl alcohol), m / z (rel intensity), $\left.{ }^{187} \mathrm{Re}\right) 674\left(\mathrm{M}^{+}, 37\right), 598\left(\mathrm{M}^{+}-\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}, 100\right), 544\left(\mathrm{M}^{+}-\mathrm{C}(\mathrm{P}-\right.$ $\left.\left.\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}, 23\right), 412\left(\mathrm{M}^{+}-\mathrm{PPh}_{3}, 37\right)$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{P}_{2} \mathrm{SRe}: \mathrm{C}, 45.25 ; \mathrm{H}, 4.29$. Found: $\mathrm{C}, 45.11 ; \mathrm{H}, 4.31$.

Preparation of $(\boldsymbol{Z})-\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathrm{NO})\left(\mathbf{P P h}_{3}\right)\left(\mathrm{C}\left(\mathbf{P}\left(\mathrm{CH}_{3}\right)_{3}\right)=\right.\right.$ $\left.\left.\mathrm{CHCH}_{3}\right)\right]^{+} \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\left((\boldsymbol{Z})-9 \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\right)$. Complex $a c-3 \mathrm{bCF}_{3} \mathrm{SO}_{3}^{-}$was prepared in a septum-capped NMR tube at $-78^{\circ} \mathrm{C}$ as described above utilizing 6b ($0.0250 \mathrm{~g}, 0.0429 \mathrm{mmol}), \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(3.80 \mu \mathrm{~L}, 0.0429 \mathrm{mmol})$, and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.600 \mathrm{~mL})$. Then $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}(55.0 \mu \mathrm{~L}, 0.540 \mathrm{mmol})$ was added, and the sample was quickly transferred to a $-80^{\circ} \mathrm{C}$ NMR probe (data: text). The sample was kept at room temperature for a day and was then transferred to a flask where solvent was removed by oil pump vacuum. The resulting red residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was layered with ether. This gave red flowers of $(\mathrm{Z})-9 \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$, which were collected by filtration and dried in vacuo $(0.0198 \mathrm{~g}, 0.0245$ mmol, 57%) dec point $222{ }^{\circ} \mathrm{C}$: 1R (cm^{-1}, thin film) $\nu_{\mathrm{N}=0} 1649 \mathrm{~s} ;{ }^{1} \mathrm{H}$ NMR ($\left.\delta, \mathrm{CDCl}_{3}\right) 7.50-7.26\left(\mathrm{~m}, 3 \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.93\left(\mathrm{dq},{ }^{3} J_{\mathrm{HP}}=36.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}\right.$ $=6.4 \mathrm{~Hz}=\mathrm{CH}), 5.48\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 1.49\left(\mathrm{~d}, J_{\mathrm{HP}}=12.5 \mathrm{~Hz}, 3 \mathrm{PCH}_{3}\right), 1.40$ (dd, $\left.{ }^{3} J_{\mathrm{HH}}=6.3 \mathrm{~Hz},{ }^{4} J_{\mathrm{HP}}=3.0 \mathrm{~Hz}, \mathrm{CCH}_{3}\right),{ }^{13} \mathrm{C}\left\{^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{ppm}, \mathrm{CDCl}_{3}\right)$ $151.4\left(\mathrm{~d}, J_{\mathrm{CP}}=3.8 \mathrm{~Hz}, \mathrm{C}_{\beta}\right), 115.1\left(\mathrm{dd},{ }^{1} J_{\mathrm{CP}}=22.2 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=8.0 \mathrm{~Hz}\right.$, $\left.\mathrm{C}_{\alpha}\right), \mathrm{PPh}_{3}$ at $135.1\left(\mathrm{~d}, J_{\mathrm{CP}}=52.6 \mathrm{~Hz}, i\right), 133.2\left(\mathrm{~d}, J_{\mathrm{CP}}=10.1 \mathrm{~Hz}, 0\right)$, $130.6(\mathrm{~s}, p), 128.4\left(\mathrm{~d}, J_{\mathrm{CP}}=10.1 \mathrm{~Hz}, m\right), 92.0\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 24.4\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $\left.=29.7 \mathrm{~Hz}, \mathrm{CCH}_{3}\right), 12.2\left(\mathrm{~d}, J_{\mathrm{CP}}=55.5 \mathrm{~Hz}, \mathrm{PCH}_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(\mathrm{ppm}$, $\left.\mathrm{CDCl}_{3}\right) 30.5\left(\mathrm{~s}, \mathrm{PCH}_{3}\right), 5.8(\mathrm{~s}, \mathrm{PPh})$; mass spectrum $((+)-\mathrm{FAB}(7 \mathrm{kV}$, Ar, 3-nitrobenzyl alcohol), m / z (rel intensity), ${ }^{187} \mathrm{Re}$) $660\left(\mathrm{M}^{+}, 100\right), 584$ $\left(\mathrm{M}^{+}-\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}, 99\right), 544\left(\mathrm{M}^{+}-\mathrm{C}\left(\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{CHCH}_{3}, 53\right), 467(544-$ $\left.\mathrm{C}_{6} \mathrm{H}_{5}, 11\right), 398\left(\mathrm{M}^{+}-\mathrm{PPh}_{3}, 30\right)$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{P}_{2}$ SRe: C, $44.55 ; \mathrm{H}, 4.11$. Found: C, $44.38 ; \mathrm{H}, 4.15$

Preparation of $(E)-\left[\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Re}(\mathbf{N O})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}\left(\mathbf{P}\left(\mathrm{CH}_{3}\right)_{3}\right)=\right.\right.$ $\left.\left.\mathrm{CHCH}_{3}\right)\right]^{+} \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\left((\boldsymbol{E})-9 \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\right)$. A $5-\mathrm{mm}$ septum-capped NMR tube was charged with crystalline $3 \mathrm{bCF}_{3} \mathrm{SO}_{3}^{-}(0.0314 \mathrm{~g}, 0.0429 \mathrm{mmol}$, $(95 \pm 2):(5 \pm 2) s c / a c$ mixture $)$ and cooled to $-78^{\circ} \mathrm{C}$. Then $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ $\left(0.600 \mathrm{~mL},-78^{\circ} \mathrm{C}\right.$) was added. The tube was shaken, $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}(55.0$ $\mu \mathrm{L}, 0.540 \mathrm{mmol}$) was added, and the mixture was quickly transferred to an $-80^{\circ} \mathrm{C}$ NMR probe (data: text). The sample was kept at room temperature for a day and was then transferred to a flask where solvent was removed by oil pump vacuum. The resulting red residue was extracted with ether and filtered. An equal volume of hexanes were added, and the solution was again filtered. Solvent was removed from the filtrate by rotary evaporation to give (E)-9 $-\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$as an orange powder, which was dried in vacuo ($0.0278 \mathrm{~g}, 0.0344 \mathrm{mmol}, 80 \%$) , mp $185^{\circ} \mathrm{C}: 1 \mathrm{R}\left(\mathrm{cm}^{-1}\right.$, thin film) $\nu_{\mathrm{N}=0} 1649 \mathrm{~s} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\delta, \mathrm{CDCl}_{3}\right) 7.48-7.27\left(\mathrm{~m}, 3 \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.13$ $\left(\mathrm{dq},{ }^{3} J_{\mathrm{HP}}=60.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}=\mathrm{CH}\right), 5.27\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 1.89\left(\mathrm{~d}, J_{\mathrm{HP}}\right.$ $\left.=12.6 \mathrm{~Hz}, 3 \mathrm{PCH}_{3}\right), 1.75\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz},{ }^{4} J_{\mathrm{HP}}=3.3 \mathrm{~Hz}, \mathrm{CCH}_{3}\right)$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{ppm}, \mathrm{CDCl}_{3}\right) 159.8\left(\mathrm{dd},{ }^{2} J_{\mathrm{CP}}=6.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right.$, $\left.\mathrm{C}_{\beta}\right), 108.3\left(\mathrm{dd},{ }^{1} J_{\mathrm{CP}}=16.7 \mathrm{~Hz},{ }^{2} J_{\mathrm{CP}}=7.5 \mathrm{~Hz}, \mathrm{C}_{\alpha}\right), \mathrm{PPh}_{3}$ at $133.6(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=53.3 \mathrm{~Hz}, i\right), 133.6\left(\mathrm{~d}, J_{\mathrm{CP}}=10.1 \mathrm{~Hz}, o\right), 130.9(\mathrm{~s}, p), 128.7(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=10.3 \mathrm{~Hz}, m\right), 120.6\left(\mathrm{q}, J_{\mathrm{CF}}=320.2 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 91.0\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 22.7$ $\left(\mathrm{d}, J_{\mathrm{CP}}=16.4 \mathrm{~Hz}, \mathrm{CCH}_{3}\right), 14.9\left(\mathrm{~d}, J_{\mathrm{CP}}=53.4 \mathrm{~Hz}, \mathrm{PCH}_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (ppm, $\left.\mathrm{CDCl}_{3}\right) 26.5\left(\mathrm{~s}, \mathrm{PCH}_{3}\right), 17.7$ (s, PPh); mass spectrum ($(+$)-FAB ($7 \mathrm{kV}, \mathrm{Ar}, 3$-nitrobenzyl alcohol), m / z (rel intensity), ${ }^{187} \mathrm{Re}$) $660\left(\mathrm{M}^{+}\right.$, 49), $584\left(\mathrm{M}^{+}-\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}, 100\right), 544\left(\mathrm{M}^{+}-\mathrm{C}\left(\mathrm{P}_{\left(\mathrm{CH}_{3}\right)}\right) \mathrm{CHCH}_{3}, 60\right), 467$ (544- $\mathrm{C}_{6} \mathrm{H}_{5}, 22$), $398\left(\mathrm{M}^{+}-\mathrm{PPh}_{3}, 30\right)$.

Photolysis Experiments, In a typical experiment, a septum-capped NMR tube was charged with $3 \mathrm{cCF}_{3} \mathrm{SO}_{3}{ }^{-}$or $3 \mathrm{dCF}_{3} \mathrm{SO}_{3}{ }^{-}(0.0400 \mathrm{mmol})$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.600 \mathrm{~mL})$. The resulting solution was freeze-pump-thaw degassed three times, and an N_{2} atmosphere was admitted. The tube was placed in a large Pyrex test tube that are partially filled with acetone. The test tube was in turn placed in a large unsilvered Pyrex Dewar charged with a dry ice/acetone bath. A Hanovia 450-W lamp was suspended in a water-cooled quartz immersion well placed adjacent to the Dewar. The sample was irradiated for 3 h at $-78^{\circ} \mathrm{C}$ and then quickly transferred to an $-80^{\circ} \mathrm{C}$ NMR probe. Analysis by ${ }^{1} \mathrm{H}$ NMR indicated a $(50 \pm 2):(50 \pm 2)$ photostationary state of $s c / a c \mathrm{Re}=\mathrm{C}=\mathrm{C}$ isomers. The sample was allowed to return to thermodynamic equilibrium (dark, room temperature), and additional irradiation cycles were conducted without noticeable decomposition.

Rate Experiments. A septum-capped NMR tube was charged with $\mathbf{6 b} \mathbf{- d}(0.0300 \mathrm{mmol})$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. The resulting solution was freeze-pump-thaw degassed three times, and an N_{2} atmosphere was admitted. Then $a c-\mathbf{3 b}-\mathbf{d C F} \mathrm{SO}_{3}{ }^{-}$were generated as above, and the tube was quickly transferred to an NMR probe that had been preequilibrated to the appropriate temperature. The disappearance of ac-3b-dCF $\mathrm{SO}_{3}{ }^{-}$and appearance of $s c-3 \mathrm{~b}-\mathrm{dCF}_{3} \mathrm{SO}_{3}{ }^{-}$were monitored by integration of the following ${ }^{1} \mathrm{H}$ NMR resonances: $a c-3 \mathrm{bCF}_{3} \mathrm{SO}_{3}{ }^{-}$and $s c-3 \mathrm{bCF} \mathrm{SO}_{3}{ }^{-}, \mathrm{CH}_{3}$; sc-3c-dCF $3_{3} \mathrm{SO}_{3}{ }^{-}$, $=\mathrm{C}=\mathrm{CH}$; ac-3c-dCF $\mathrm{SO}_{3}{ }^{-}$, the upfield aromatic proton. Calculation of k_{1} : see Table X. All ΔH^{\ddagger} and ΔS^{*} were calculated from $\ln \left(k_{1} / T\right)$ versus $1 / T$ plots. Other rate experiments were conducted similarly.

X-ray Crystal Structure of sc-3dPF ${ }_{6}^{-}$. A large yellow crystal of sc$3 \mathrm{dPF}_{6}^{-}$(see above) was cleaved to give a fragment suitable for X-ray crystallography. The fragment was mounted on a glass fiber with epoxy cement and then coated with epoxy cement. Data were collected as summarized in Table 11. Lattice parameters were determined for 15 centered reflections with 2θ between 16° and 24°.

The unit cell was monoclinic, and the pattern of systematic absence was consistent with either centric space group $C 2 / c$ (no. 15) or acentric space group Cc (no.9). Statistics indicated a centric structure, so space group $C 2 / c$ was used in subsequent analysis.

The structure was solved by standard heavy atom techniques with the UCLA crystallographic package of programs. ${ }^{45}$ The position of the rhenium was computed from a Patterson map. After a cycle of leastsquares refinement, an electron density difference map was computed. This gave the positions of all non-hydrogen atoms. Absorption corrections (ψ scan technique; ψ scan reflections $11 \bar{I}, 33 \overline{3}, 55 \overline{5}$, max $/ \mathrm{min}$ intensity 1.29) were applied. After several cycles of refinement, the hydrogen atom positions were computed ($\mathrm{C}-\mathrm{H}$ distance $1.0 \AA$), and isotropic thermal parameters were assigned to the individual hydrogens that were approximately equal to the isotropic thermal parameter of the carbon to which they were bond. All non-hydrogen atoms were then refined with anisotropic thermal parameters.

X-ray Crystal Structure of $\mathbf{6 b}$. X-ray data were collected on red prisms of $\mathbf{6 b}$ (see above) as summarized in Table 11, employing techniques that have been previously described. ${ }^{46}$ Lattice parameters (Table 1) were determined analogously to the previous structure. The position of the rhenium was located from a three-dimensional Patterson map. Full-matrix least-squares refinement yielded all non-hydrogen atoms. ${ }^{45}$ Absorption corrections were applied, and all non-hydrogen atoms were refined with anisotropic temperature factors, except for $\mathrm{C}(14)$, which had a negative temperature factor when refined anisotropically. Phenyl and methyl hydrogens were located from a difference Fourier map. The cyclopentadienyl hydrogen positions were computed as above.

Acknowledgment, We thank the Department of Energy and NIH for support of this research.

Registry No. 2a, 82582-46-5; 2b, 82582-47-6; 2c, 82582-48-7; 2d, 115365-02-1; 3a CF $3_{3} \mathrm{SO}_{3}^{-}, 82582$-34-1; sc-3b $\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}, 82637-17-0$; ac3b $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}, 82582-36-3$; sc-3c $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}, 82659-75-4$; ac-3c $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$, 82582-38-5; sc-3d $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$, 115365-04-3; sc-3d $\mathrm{PF}_{6}{ }^{-}$, $115405-78-2$; ac-3d $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$, 115405-77-1; 6a, 82582-43-2; 6b, 82582-44-3; 6c, 82582-45-4; 6d, 115365-05-4; 7b FSO ${ }_{3}^{-}$, 82598-62-7; sc-7c FSO ${ }_{3}{ }^{-}$, 82637-19-2; ac-7c $\mathrm{FSO}_{3}{ }^{-}, 82582-42-1 ; 8 \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}, 115365-07-6 ;(Z)-9 \mathrm{CF}_{3} \mathrm{SO}_{3}^{-}, 115365-$ 09-8; (E)-9 $\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}, 115405-80-6 ;\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$, 82293-79-6; ($1-\mathrm{C}_{10} \mathrm{H}_{7}$) $\mathrm{CH}_{2} \mathrm{MgCl}, 37846-72-3$.

Supplementary Material Available: Tables of hydrogen atom coordinates and isotropic and anisotropic temperature factors for $3 \mathrm{dPF}_{6}{ }^{-}$and $\mathbf{6 b}$ (4 pages); tables of observed and calculated structure factors (36 pages). Ordering information is given on any current masthead page.
(45) Programs employed included caress (R. W. Broach, Argonne National Laboratory; Caress incorporated features of Profile: Blessing, R. G.; Coppend, P.; Becker, P. J. Appl. Cryst. 1972, 7, 488), nORMAL, EXFFt, and Search (all from the multan 80 package, Peter Main, Department of Physics, University of York, York, England), ORFLS (ORNL-TM-30-5), ORFFE (ORNL-TM-306), and ORTEP (ORNL-TM-5138)
(46) Strouse, J.; Layten, S. W.; Strouse, C. E. J. Am. Chem. Soc. 1977, 99, 562.

[^0]: (1) (a) University of Utah. (b) University of California. (c) Address correspondence to this author at the University of Utah.
 (2) Review: Bruce, M. l.; Swincer, A. G. Adv. Organomet. Chem. 1983 22, 59
 (3) (a) Davison, A.; Selegue, J. P. J. Am. Chem. Soc. 1978, 100, 7763. (b) Adams, R. D.; Davison, A.; Selegue, J. P. Ibid. 1979, IOI, 7232. (c) Davison, A.; Selegue, J. P. Ibid. 1980, 102, 2455.
 (4) (a) Selegue, J. P. J. Am. Chem. Soc. 1982, 104, 119. (b) Selegue, J. P. Ibid. 1983, l05, 5921 . (c) lyer, R. S.; Selegue, J. P. Ibid. 1987, $109,910$.
 (5) (a) Boland, B. E.; Fam, S. A.; Hughes, R. P. J. Organomet. Chem. 1979, 172, C29. (b) Boland-Lussier, B. E.; Churchill, M. R.; Hughes, R. P.; Rheingold, A. L. Organometallics 1982, I, 628. (c) Boland-Lussier, B. E.; Hughes, R. P. Ibid. 1982, $1,635$.
 (6) (a) Bruce, M. 1. Aust. J. Chem. 1980, 33, 1471. (b) Bruce, M. 1.; Wong, F. S.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 1982, 2203. (c) Bruce, M. 1.; Humphrey, M. G.; Snow, M. R.; Tiekink, E. R. T. J. Organomet. Chem. 1986, 314, 213. (d) Bruce, M. l.; Koutsantonis, G. A.; Liddell, M. J.; Nicholson, B. K. Ibid. 1987, 320, 217. (e) Bruce, M. 1.; Humphrey, M. G.; Liddell, M. J. Ibid. 1987, 321,91 . (f) Bruce, M. 1.; Humphrey, M. G.; Koutsantonis, G. A.; Liddell, M. J. Ibid. 1987, 326, 247.
 (7) (a) Davies, S. G.: Scott, F. J. Organomet. Chem. 1980, 188, C41. (b) Abbott, S.; Davies, S. G.; Warner, P. Ibid. 1983, 246, C65.
 (8) (a) Wolf, J.; Werner, H.; Serhadli, O.; Ziegler, M. L. Angew. Chem., Int. Ed. Engl. 1983, 22, 414. (b) Garcia Alonso, F. J.; Höhn, A.; Wolf, J.; Otto, H.; Werner, H. Ibid. 1985, 24, 406. (c) Werner, H.; Garcia Alonso, F. J.; Otto, H.; Peters, K.; von Schnering, H. G. J. Organomet. Chem. 1985, 289, C5. (d) Weinand, R.; Werner, H. J. Chem. Soc., Chem. Commun. 1985, 1145. (e) Höhn, A.; Otto, H.; Dziallas, M.; Werner, H. Ibid. 1987, 852. (f) Werner, H.; Wolf, J.; Garcia Alonso, F. J.; Ziegler, M. L.; Serhadli, O. J. Organomet. Chem. 1987, 336, 397.
 (9) (a) Consiglio, G.; Bangerter, F.; Darpin, C.; Morandini, F;; Lucchini, V. Organometallics 1984, 3, 1446. (b) Consiglio, G.; Morandini, F.; Ciani, G. F.; Sironi, A. Ibid. 1986, 5, 1976. (c) Consiglio, G.; Morandini, F. Inorg. Chim. Acta 1987, 127, 79. (d) Consiglio, G.; Morandini, F. Chem. Rev. 1987, 87, 761. (e) Consiglio, G.; Schwab, R.; Morandini, F. J. Chem. Soc., Chem. Commun. 1988, 25.
 (10) (a) Landon, S. J.; Shulman, P. M.; Geoffroy, G. L. J. Am. Chem. Soc. 1985, 107, 6739. (b) Pourreau, D. B.; Geoffroy, G. L.; Rheingold, A. L.; Geib, S. J. Organometallics 1986, 5, 1337.

[^1]: (22) (a) Kiel, W. A.; Lin, G.-Y.; Constable, A. G.; McCormick, F. B.; Strouse, C. E.; Eisenstein, O.; Gladysz, J. A. J. Am. Chem. Soc. 1982, 104 4865. (b) Kiel, W. A.; Lin, G.-Y.; Bodner, G. S.; Gladysz, J. A. Ibid. 1983, 105, 4958. (c) Kiel, W. A.; Buhro, W. E.; Gladysz, J. A. Organometallics 1984, 3, 879. (d) Georgiou, S.; Gladysz, J. A. Tetrahedron 1986, 42, 1109. (e) O'Connor, E. J.; Kobayashi, M.; Floss, H. G.; Gladysz, J. A. J. Am. Chem Soc. 1987, 109, 4837.
 (23) Merrifield, J. H.; Strouse, C. E.; Gladysz, J. A. Organometallics 1982 1, 1204.
 (24) Bodner, G. S.; Smith, D. E.; Hatton, W. G.; Heah, P. C.; Georgiou, S.; Rheingold, A. L.; Geib, S. J.; Hutchinson, J. P.; Gladysz, J. A. J. Am Chem. Soc. 1987, 109, 7688.

[^2]: (25) Wong, A.; Gladysz, J. A. J. Am. Chem. Soc. 1982, 104, 4948.
 (26) Buhro, W. E.; Wong, A.; Merrifield, J. H.; Lin, G.-Y.; Constable, A G.; Gladysz, J. A. Organometallics 1983, 2, 1852.
 (27) Nomenclature conventions: (a) In synclinal ($s c$) $\mathrm{Re}=\mathrm{C}=\mathrm{C}$ isomers, the highest priority ${ }^{27 \mathrm{~b}}$ ligands on $\operatorname{Re}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and C_{8} define a $60 \pm 30^{\circ}$ torsion angle; in anticlinal ($a c$) isomers, the highest priority ligands define a $120 \pm 30^{\circ}$ torsion angle. Pure Appl. Chem. 1976, 45, 11; see section E-5.6, p 24. (b) The $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$ ligand is considered to be a pseudoatom of atomic number 30 , which gives the following priority sequence: $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}>\mathrm{PPh}_{3}>$ $\mathrm{NO}>=\mathrm{C}=\mathrm{CHR}$. (c) Compounds not indicated to be specific $\mathrm{Re}=\mathrm{C}=\mathrm{C}$ isomers are mixtures of isomers. (d) TMP $=2,2,6,6$-tetramethylpiperidine. (e) $\mathrm{dppe}=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$.

[^3]: (28) Complex $6 \mathrm{a}-d_{1}$ was prepared from deuterioacetyl complex $\mathbf{2 a}-d_{3}$ which was in turn synthesized from 1 and $\mathrm{CD}_{3} \mathrm{Mgl}{ }^{26}$

[^4]: (33) Herrmann, W. A.; Hubbard, J. L.; Bernal, l.; Korp, J. D.; Haymore B. L.; Hillhouse, G. L. Inorg. Chem. 1984, 23, 2978.
 (34) Cotton, F. A.; Wing, R. M. Inorg. Chem. 1965, 4, 314.

[^5]: (35) (a) Leffler, J. E.; Grunwald, E. Rates and Equilibria of Organic Reactions; Wiley: New York, 1963; Chapter 9. (b) Wilkins, R. G. The Study of Kinetics and Mechanism of Reactions of Transition Metal Complexes; Allyn and Bacon: Boston, 1974; pp 100-101. (c) Giese, B. Acc. Chem. Res. 1984, 17, 438. (d) Linert, W. Inorg. Chim. Acta 1988, 141, 233.
 (36) (a) None of our data rigorously establish whether vinylidene complex $\mathrm{Re}=\mathrm{C}=\mathrm{C}$ isomerization occurs via $\mathrm{Re}=\mathrm{C}_{\alpha}$ or $\mathrm{C}_{\alpha}=\mathrm{C}_{\beta}$ bond rotation. However, since the barriers are similar to those for $\mathrm{Re}=\mathrm{C}_{\alpha}$ isomerization in the corresponding alkylidene complexes, and alkene $\mathrm{C}=\mathrm{C}$ rotation normally requires much higher temperatures, ${ }^{36 b}$ we assume that $\mathrm{Re}=\mathrm{C}_{\alpha}$ bond rotation is occurring. (b) Gajewski, J. J. Hydrocarbon Thermal Isomerization; Academic Press: New York, 1981; pp 17-18.
 (37) Further, since a vinylidene substituent is directed at the bulky PPh_{3} ligand in the $\mathrm{Re}=\mathrm{C}=\mathrm{C}$ ground states, steric interactions may be attenuated in the $\mathrm{Re}=\mathrm{C}=\mathrm{C}$ isomerization transition states.
 (38) McCormick, F. B.; Kiel, W. A.; Gladysz, J. A. Organometallics 1982, 1,405 .

[^6]: (39) (a) Pourreau, D. B.; Geoffroy, G. L. Adv. Organomet. Chem. 1985, 24, 249. (b) The long wavelength UV absorptions of $3 \mathrm{dCF}_{3} \mathrm{SO}_{3}{ }^{-}$are also likely due to MLCT transitions. ${ }^{39 \mathrm{a}}$

[^7]: (40) Mislow, K.; Siegel, J. J. Am. Chem. Soc. 1984, 106, 3319.
 (41) See, inter alia: (a) Cinquini, M.; Colonna, S.; Cozzi, F.; Stirling, C. J. M. J. Chem. Soc., Perkin Trans. I 1976, 2061. (b) Claesson, A.; Olsson, L.-E. J. Am. Chem. Soc. 1979, 101, 7302. (c) Corey, E. J.; Boaz, N. W Tetrahedron Lett. 1984, 25, 3055.
 (42) In other relevant work, the "recognition" of stereogenic units separated by a $\mathrm{C} \equiv \mathrm{C}$ triple bond has been probed by NMR: (a) Jones, A. J.; Stiles, P. J. Tetrahedron Lett. 1977, 18, 1965. Stiles, P. J. Tetrahedron 1977, 33, 2981. (b) Reisse, J.; Ottinger, R.; Bickart, P.; Mislow, K. J. Am. Chem. Soc. 1978, 100, 911 .
 (43) Brookhart, M.; Liu, Y.; Buck, R. C. J. Am. Chem. Soc. 1988, Il0, 2337.

[^8]: (44) See, for example: (a) Crocco, G. L.; Gladysz, J. A. J. Am. Chem. Soc. 1985, 107, 4103. (b) Heah, P. C.; Patton, A. T.; Gladysz, J. A. Ibid. 1986, 108,1185 . (c) Fernảndez, J. M.; Emerson, K.; Larsen, R. D.; Gladysz, J. A. Ibid. 1986, 108,8268 . (d) Zwick, B. D.; Arif, A. M.; Patton, A. T.; Gladysz, J. A. Angew. Chem., Int. Ed. Engl. 1987, 26, 910. (e) Fernảndez, J. M.; Emerson, K.; Larsen, R. D.; Gladysz, J. A. J. Chem. Soc., Chem. Commun. 1988, 37.

